A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchmen...A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h 〉 2.2 L/h 〉 1.8 L/h 〉 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastiic mulch applied in silty soil in arid regions.展开更多
The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, di...The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability.展开更多
Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density ...Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.展开更多
It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effect...It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effects of the gas flow rate on the plasma parameters are calculated and the results show that: with an increasing flow rate, the total ion(N+2, N+) density decreases, the mean sheath thickness becomes wider, the radial electric field in the sheath and the axial electric field show an increase, and the energies of both kinds of nitrogen ions increase;and, as the axial ion current density that is moving toward the ground electrode increases, the ion current density near the ground electrode increases. The simulation results will provide a useful reference for plasma jet technology involving rf hollow cathode discharges in N2.展开更多
Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirr...Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirring the alloy into a HCl aqueous solution with various concentrations at room temperature. The microstructure of the alloy before and after surface treatment was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties before and after surface treatment were compared, and the alloy treated in 0.025 mol/L HCl solution showed the optimal high-rate dischargeability.展开更多
Ni-Fe rechargeable batteries possess the advantages of long cycle life, high theoretical specific energy, abundant raw material, low price and environmental friendship. It has a wide applied perspective. The advantage...Ni-Fe rechargeable batteries possess the advantages of long cycle life, high theoretical specific energy, abundant raw material, low price and environmental friendship. It has a wide applied perspective. The advantages, disadvantages and preparation methods of iron electrodes were summarized. The influence of four factors on discharge capacity and self-discharge rate of iron electrode were discussed by means of orthogonal experiments, galvanostatic charges and discharges. The influences of graphite on the discharge capacity and self-discharge rate of iron electrode were the most remarkable, the most unapparent influences on the discharge capacity and self-discharge rate were HPMC (hydroxy propoxy methoxy cellulose) and sodium sulphide, respectively. The aim of the present research was to study the effects of graphite, HPMC and iron powder added in the electrodes, sodium sulphide added in the electrolytes on the discharge capacity and self-discharge rate of iron electrodes. The largest discharge capacity of the iron electrodes was 488.5 mAh/g-Fe at 66.4 mA/g-Fe in the first ten cycles, and the average self-discharge rate was 0.367% per hour.展开更多
Investigation was made of the sputtering rate in glow discharge lamp with relaion to constituent of 25 different specimens of 6 binary systems.namely,Cr-Fe,Bi-Sb,Cu-Zn, Ag-Cu,Al-Zn and Cd-Sn.by measuring mass loss sft...Investigation was made of the sputtering rate in glow discharge lamp with relaion to constituent of 25 different specimens of 6 binary systems.namely,Cr-Fe,Bi-Sb,Cu-Zn, Ag-Cu,Al-Zn and Cd-Sn.by measuring mass loss sfter each sputtering under constant Ar pressure and voltage applicd.The correlation.in general,between sputtering rate and concentration of constituent of these non-intermetallic binary alloys obeys the hyperbolic law under steady state,that may be approximately regarded as linear correlation only on certain special condition if the two components of the alloys with similar sputte ringrates.展开更多
Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated....Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73~ at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents.展开更多
A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using ...A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using optical and electrical methods,the discharge characteristics are investigated for the diffuse plasma plume.Results indicate that the discharge has a pulse characteristic,under the excitation of a DC voltage.The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode.It is found that,with an increment of the gas flow rate,both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode,reach their minima at about1.5 L/min,and then slightly increase in the turbulent mode.However,the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min,and then slightly decreases in the turbulent mode.展开更多
According to Cisco, mobile multimedia services now account for more than half the total amount of Internet traffic. This trend is burdening mobile devices in terms of power consumption, and as a result, more effort is...According to Cisco, mobile multimedia services now account for more than half the total amount of Internet traffic. This trend is burdening mobile devices in terms of power consumption, and as a result, more effort is needed to devise a range of pow- er-saving techniques. While most power-saving techniques are based on sleep scheduling of network interfaces, little has been done to devise multimedia content adaptation techniques. In this paper, we propose a multiple linear regression model that predicts the battery voltage discharge rate for several video send bit rates in a VoIP application. The battery voltage dis- charge rate needs to be accurately estimated in order to esti- mate battery life in critical VoIP contexts, such as emergency communication. In our proposed model, the range of video send bitrates is carefully chosen in order to maintain an acceptable VoIP quality of experience. From extensive profiling, the empir- ical resuhs show that the model effectively saves power and pro- longs real-time VoIP sessions when deployed in power-driven adaptation schemes.展开更多
The electron kinetic model for investigating the transport and ionization rate coefficients of argon glow discharge dusty plasma is developed from the Boltzmann equation.Both of the electron-neutral and electron-dust ...The electron kinetic model for investigating the transport and ionization rate coefficients of argon glow discharge dusty plasma is developed from the Boltzmann equation.Both of the electron-neutral and electron-dust collisions are considered as collision terms in the kinetic equation.The kinetic equation is simplified by employing the local approximation and nonlocal approach under the same discharge conditions,and the corresponding simplified kinetic equations are known as local and nonlocal kinetic equations respectively.Then the electron energy distribution function(EEDF)is obtained by numerically solving the local and nonlocal kinetic equations and the dust charging equations simultaneously.Based on the obtained EEDFs,the effective electron temperature,electron mobility,electron diffusion coefficient and ionization rate coefficient are calculated for different discharge conditions.It is shown that the EEDFs calculated from the local kinetic model clearly differ from the nonlocal EEDFs and both the local and nonlocal EEDFs are also clearly different with Maxwellian distributions.The appearance of dust particles results in an obvious decrease of high energy electrons and increase of low energy electrons when axial electric field is low.With the increase of axial electric field,the influence of dust particles on the EEDFs becomes smaller.The electron mobility and diffusion coefficients calculated on the basis of local and nonlocal EEDFs do not differ greatly to the dust-free ones.While,when dust density nd=10^6 cm^?3,the electron mobility increases obviously compared with the dust-free results at low axial electric field and decreases with the increasing axial electric field until they are close to the dust-free ones.Meanwhile,electron diffusion coefficients for dusty case become smaller and decrease with the increasing axial electric field.The ionization rate coefficients decrease when dust particles are introduced and they approach the dust-free results gradually with the increasing axial electric field.展开更多
Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical imped...Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.展开更多
This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data colle...This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data collected from an experimental of EDM process, whereas several research objectives have been outlined such as experimenting machining material for selected gap current, identifying machining parameters for ANN variables and selecting appropriate size of data selection. The experimental data (input variables) of copper-electrode and steel-workpiece is based on a selected gap current where pulse on time, pulse off time and sparking frequency have been chosen at optimum value of Material Removal Rate (MRR). In this paper, the result has significantly demonstrated that the ANN model is capable of predicting the MRR with low percentage prediction error when compared with the experimental result.展开更多
The non stoichiometric high rate discharge hydrogen storage alloys series MlNi 3.85 Co 0.45 Mn 0.4 Al 0.3 X 0.1 (Ml represents the lanthanum rich mischmetal, and X=Mg,Si,Sn) were prepared. The XRD and EDS results show...The non stoichiometric high rate discharge hydrogen storage alloys series MlNi 3.85 Co 0.45 Mn 0.4 Al 0.3 X 0.1 (Ml represents the lanthanum rich mischmetal, and X=Mg,Si,Sn) were prepared. The XRD and EDS results show that the high catalysis active miscellaneous La 2Ni 7 phase forms except for main phase LaNi 5 in the alloy body. The high rate discharge performance of hydrogen storage alloys electrode was improved because of the formation of La 2Ni 7 phase. The discharge capacities at 0.2C, 1C and 5C discharge rate reach 320 mAh·g -1 , 300 mAh·g -1 and 260 mAh·g -1 respectively when X is (Mg+Si). At the same scanning rate of circular volt—ampere testing, the surface anode oxidation peak current and peak area of the alloy containing (Mg+Si) electrode are far more larger than that of the high cobalt alloy MlNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (AB 5). Furthermore, the cobalt content of the hydrogen storage alloy containing (Mg+Si) decreases by 40% and the high rate discharge performance improves obviously compare to high cobalt AB 5 alloys, it is promising that the hydrogen storage alloy containing (Mg+Si) becomes to an ideal dynamic battery cathode material.展开更多
This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes...This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper.展开更多
基金supported by the National Basic Research Program of China (2009CB421302)the National Natural Science Foundation of China (41071026,51069017)
文摘A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h 〉 2.2 L/h 〉 1.8 L/h 〉 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastiic mulch applied in silty soil in arid regions.
文摘The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability.
基金the financial support from the National Natural Science Foundation of China(51672033,U1610255,U1703251).
文摘Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.
基金supported by the Natural Science Foundation of Hebei Province,China(No.A2012205072)
文摘It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effects of the gas flow rate on the plasma parameters are calculated and the results show that: with an increasing flow rate, the total ion(N+2, N+) density decreases, the mean sheath thickness becomes wider, the radial electric field in the sheath and the axial electric field show an increase, and the energies of both kinds of nitrogen ions increase;and, as the axial ion current density that is moving toward the ground electrode increases, the ion current density near the ground electrode increases. The simulation results will provide a useful reference for plasma jet technology involving rf hollow cathode discharges in N2.
基金supported by Hi-Tech Research and Development Program (863) of China (2006AA11A159)
文摘Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirring the alloy into a HCl aqueous solution with various concentrations at room temperature. The microstructure of the alloy before and after surface treatment was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties before and after surface treatment were compared, and the alloy treated in 0.025 mol/L HCl solution showed the optimal high-rate dischargeability.
基金This work was supported by the National Natural Science Foundation of China under grant No.50002005Natural Sci ence Foundation of Tianjin under grant No.013606811,which were presided by Shihai YE.
文摘Ni-Fe rechargeable batteries possess the advantages of long cycle life, high theoretical specific energy, abundant raw material, low price and environmental friendship. It has a wide applied perspective. The advantages, disadvantages and preparation methods of iron electrodes were summarized. The influence of four factors on discharge capacity and self-discharge rate of iron electrode were discussed by means of orthogonal experiments, galvanostatic charges and discharges. The influences of graphite on the discharge capacity and self-discharge rate of iron electrode were the most remarkable, the most unapparent influences on the discharge capacity and self-discharge rate were HPMC (hydroxy propoxy methoxy cellulose) and sodium sulphide, respectively. The aim of the present research was to study the effects of graphite, HPMC and iron powder added in the electrodes, sodium sulphide added in the electrolytes on the discharge capacity and self-discharge rate of iron electrodes. The largest discharge capacity of the iron electrodes was 488.5 mAh/g-Fe at 66.4 mA/g-Fe in the first ten cycles, and the average self-discharge rate was 0.367% per hour.
文摘Investigation was made of the sputtering rate in glow discharge lamp with relaion to constituent of 25 different specimens of 6 binary systems.namely,Cr-Fe,Bi-Sb,Cu-Zn, Ag-Cu,Al-Zn and Cd-Sn.by measuring mass loss sfter each sputtering under constant Ar pressure and voltage applicd.The correlation.in general,between sputtering rate and concentration of constituent of these non-intermetallic binary alloys obeys the hyperbolic law under steady state,that may be approximately regarded as linear correlation only on certain special condition if the two components of the alloys with similar sputte ringrates.
基金supported by the National Natural Science Foundation for Postdoctoral Scientists of China (Grant No. 20090451554)
文摘Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73~ at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents.
基金supported by National Natural Science Foundation of China(Nos.10805013,11375051)Funds for Distinguished Young Scientists of Hebei Province,China(No.A2012201045)+1 种基金Department of Education for Outstanding Youth Project of China(No.Y2011120)Youth Project of Hebei University of China(No.2011Q14)
文摘A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using optical and electrical methods,the discharge characteristics are investigated for the diffuse plasma plume.Results indicate that the discharge has a pulse characteristic,under the excitation of a DC voltage.The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode.It is found that,with an increment of the gas flow rate,both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode,reach their minima at about1.5 L/min,and then slightly increase in the turbulent mode.However,the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min,and then slightly decreases in the turbulent mode.
基金funding from the European Union Seventh Framework Programme (FP7/2007-2013) undergrant agreement No. 284863 (FP7 SEC GERYON)
文摘According to Cisco, mobile multimedia services now account for more than half the total amount of Internet traffic. This trend is burdening mobile devices in terms of power consumption, and as a result, more effort is needed to devise a range of pow- er-saving techniques. While most power-saving techniques are based on sleep scheduling of network interfaces, little has been done to devise multimedia content adaptation techniques. In this paper, we propose a multiple linear regression model that predicts the battery voltage discharge rate for several video send bit rates in a VoIP application. The battery voltage dis- charge rate needs to be accurately estimated in order to esti- mate battery life in critical VoIP contexts, such as emergency communication. In our proposed model, the range of video send bitrates is carefully chosen in order to maintain an acceptable VoIP quality of experience. From extensive profiling, the empir- ical resuhs show that the model effectively saves power and pro- longs real-time VoIP sessions when deployed in power-driven adaptation schemes.
基金National Natural Science Foundation of China(Nos.11775062 and 61601419)the Key Laboratory Foundation of National Key Laboratory of Electromagnetic Environment(No.614240319010303).
文摘The electron kinetic model for investigating the transport and ionization rate coefficients of argon glow discharge dusty plasma is developed from the Boltzmann equation.Both of the electron-neutral and electron-dust collisions are considered as collision terms in the kinetic equation.The kinetic equation is simplified by employing the local approximation and nonlocal approach under the same discharge conditions,and the corresponding simplified kinetic equations are known as local and nonlocal kinetic equations respectively.Then the electron energy distribution function(EEDF)is obtained by numerically solving the local and nonlocal kinetic equations and the dust charging equations simultaneously.Based on the obtained EEDFs,the effective electron temperature,electron mobility,electron diffusion coefficient and ionization rate coefficient are calculated for different discharge conditions.It is shown that the EEDFs calculated from the local kinetic model clearly differ from the nonlocal EEDFs and both the local and nonlocal EEDFs are also clearly different with Maxwellian distributions.The appearance of dust particles results in an obvious decrease of high energy electrons and increase of low energy electrons when axial electric field is low.With the increase of axial electric field,the influence of dust particles on the EEDFs becomes smaller.The electron mobility and diffusion coefficients calculated on the basis of local and nonlocal EEDFs do not differ greatly to the dust-free ones.While,when dust density nd=10^6 cm^?3,the electron mobility increases obviously compared with the dust-free results at low axial electric field and decreases with the increasing axial electric field until they are close to the dust-free ones.Meanwhile,electron diffusion coefficients for dusty case become smaller and decrease with the increasing axial electric field.The ionization rate coefficients decrease when dust particles are introduced and they approach the dust-free results gradually with the increasing axial electric field.
基金Project(2006AA11A151) supported by the National Hi-Tech Research and Development Program of China
文摘Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.
文摘This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data collected from an experimental of EDM process, whereas several research objectives have been outlined such as experimenting machining material for selected gap current, identifying machining parameters for ANN variables and selecting appropriate size of data selection. The experimental data (input variables) of copper-electrode and steel-workpiece is based on a selected gap current where pulse on time, pulse off time and sparking frequency have been chosen at optimum value of Material Removal Rate (MRR). In this paper, the result has significantly demonstrated that the ANN model is capable of predicting the MRR with low percentage prediction error when compared with the experimental result.
文摘The non stoichiometric high rate discharge hydrogen storage alloys series MlNi 3.85 Co 0.45 Mn 0.4 Al 0.3 X 0.1 (Ml represents the lanthanum rich mischmetal, and X=Mg,Si,Sn) were prepared. The XRD and EDS results show that the high catalysis active miscellaneous La 2Ni 7 phase forms except for main phase LaNi 5 in the alloy body. The high rate discharge performance of hydrogen storage alloys electrode was improved because of the formation of La 2Ni 7 phase. The discharge capacities at 0.2C, 1C and 5C discharge rate reach 320 mAh·g -1 , 300 mAh·g -1 and 260 mAh·g -1 respectively when X is (Mg+Si). At the same scanning rate of circular volt—ampere testing, the surface anode oxidation peak current and peak area of the alloy containing (Mg+Si) electrode are far more larger than that of the high cobalt alloy MlNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (AB 5). Furthermore, the cobalt content of the hydrogen storage alloy containing (Mg+Si) decreases by 40% and the high rate discharge performance improves obviously compare to high cobalt AB 5 alloys, it is promising that the hydrogen storage alloy containing (Mg+Si) becomes to an ideal dynamic battery cathode material.
文摘This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper.