期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma 被引量:3
1
作者 陈攀 沈俊 +2 位作者 冉唐春 杨涛 印永祥 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第12期119-124,共6页
Experiments of CO_2 splitting by dielectric barrier discharge(DBD) plasma were carried out, and the influence of CO_2 flow rate, plasma power, discharge voltage, discharge frequency on CO_2 conversion and process en... Experiments of CO_2 splitting by dielectric barrier discharge(DBD) plasma were carried out, and the influence of CO_2 flow rate, plasma power, discharge voltage, discharge frequency on CO_2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO_2 decomposed was only proportional to the amount of conductive electrons across the discharge gap,and the electron amount was proportional to the discharge power; the energy efficiency of CO_2 conversion was almost a constant at a lower level, which was limited by CO_2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO_2 conversion rate decreased as the CO_2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO_2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve. 展开更多
关键词 CO2 splitting dielectric barrier discharges conversion energy efficiency
下载PDF
A Novel TiO_2 Combined Pulsed Diaphragm Discharge System for Phenol Degradation
2
作者 段剑金 胡觉 +4 位作者 许林 温元斌 张超 孟月东 张呈旭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第4期303-308,共6页
A synergistic photocatalysis combined pulsed diaphragm discharge(PDD)system with TiO_2 nanofilm deposited on the surface of quartz diaphragm is developed for the first time for phenol degradation in an aqueous solut... A synergistic photocatalysis combined pulsed diaphragm discharge(PDD)system with TiO_2 nanofilm deposited on the surface of quartz diaphragm is developed for the first time for phenol degradation in an aqueous solution.It is observed that the decomposition efficiency of phenol in the TiO_2 combined PDD system is higher than that of the single PDD system under the same conditions,indicating a successful collaboration between the photocatalysis and the plasma decomposition in the present system.Analysis of the solution's pH value confirms this collaboration and further reveals that the photocatalytic enhancement effect of phenol degradation is strong at a relatively low supplied voltage.The present TiO_2 combined PDD system exhibits improved efficiencies of pollutant degradation and energy utilization,suggesting a good candidate for wastewater treatment. 展开更多
关键词 pulsed diaphragm discharge TiO_2 photocatalysis degradation efficiency energy efficiency phenol
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部