In this paper, a computational modeling study of stream propagation in the atmospheric-pressure helium plasma in ambient atmosphere(oxygen) is presented. A coupled fluid model between time-dependent plasma dynamics ...In this paper, a computational modeling study of stream propagation in the atmospheric-pressure helium plasma in ambient atmosphere(oxygen) is presented. A coupled fluid model between time-dependent plasma dynamics and steady state neutral gas flow is employed to provide a fundamental insight into the evolution of the streamers. The obtained simulation results showing that the sheath forms near the dielectric surface and shields the axial stream propagation. The stream front propagates with axial velocity in a range of 10^4m/s–10^5m/s. And, the increasing accumulated surface charge should be responsible for reducing the propagation velocity of the streamer front in the axial direction. Besides, when the gas flow rate is 1.1 standard liter per minute(SLM), we find that the concentration of oxygen drastically increases at a larger radial position near a treated surface. Therefore, Penning ionization by helium metastables and oxygen peaks at an off-axis position, corresponding to the ring-shaped emission profile in cylindrical coordinates. In this case, the simulated results show the ring-shaped ground atomic oxygen density profile near the treated surface(z = 0.5 mm) at a large gas flow rate of 1.1 SLM, which is consistent with the observation in a similar experiment.展开更多
In this work, a computational modeling study on the mechanism of the acceleration behavior of a plasma bullet in needle-plane configuration is presented. Above all, in our model, two sub-models of time-dependent plasm...In this work, a computational modeling study on the mechanism of the acceleration behavior of a plasma bullet in needle-plane configuration is presented. Above all, in our model, two sub-models of time-dependent plasma dynamics and laminar flow axe connected using a oneway coupled method, and both the working gas and the surrounding gas around the plasma jet are assumed to be the same, which are premixed He/N2 gas. The mole fractions of the N2 (NMF) ingredient are set to be 0.01%, 0.1% and 1% in three cases, respectively. It is found that in each case, the plasma bullet accelerates with time to a peak velocity after it exits the nozzle and then decreases until getting to the treated surface, and that the velocity of the plasma bullet increases at each time moment with the peak value changing from 0.72×10^6 m/s to 0.80×10^6 m/s but then drops more sharply when the NMF varies from 0.01% to 1%. Besides, the electron impact ionizations of helium neutrals and nitrogen molecules are found to have key influences on the propagation of a plasma bullet instead of the penning ionization.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11465013)the International Science and Technology Cooperation Program of China(Grant No.2015DFA61800)the Natural Science Foundation of Jiangxi Province,China(Grant No.20151BAB212012)
文摘In this paper, a computational modeling study of stream propagation in the atmospheric-pressure helium plasma in ambient atmosphere(oxygen) is presented. A coupled fluid model between time-dependent plasma dynamics and steady state neutral gas flow is employed to provide a fundamental insight into the evolution of the streamers. The obtained simulation results showing that the sheath forms near the dielectric surface and shields the axial stream propagation. The stream front propagates with axial velocity in a range of 10^4m/s–10^5m/s. And, the increasing accumulated surface charge should be responsible for reducing the propagation velocity of the streamer front in the axial direction. Besides, when the gas flow rate is 1.1 standard liter per minute(SLM), we find that the concentration of oxygen drastically increases at a larger radial position near a treated surface. Therefore, Penning ionization by helium metastables and oxygen peaks at an off-axis position, corresponding to the ring-shaped emission profile in cylindrical coordinates. In this case, the simulated results show the ring-shaped ground atomic oxygen density profile near the treated surface(z = 0.5 mm) at a large gas flow rate of 1.1 SLM, which is consistent with the observation in a similar experiment.
基金supported by National Natural Science Foundation of China(No.11465013)the Natural Science Foundation of Jiangxi Province,China(No.20151BAB212012)in part by the International Science and Technology Cooperation Program of China(No.2015DFA61800)
文摘In this work, a computational modeling study on the mechanism of the acceleration behavior of a plasma bullet in needle-plane configuration is presented. Above all, in our model, two sub-models of time-dependent plasma dynamics and laminar flow axe connected using a oneway coupled method, and both the working gas and the surrounding gas around the plasma jet are assumed to be the same, which are premixed He/N2 gas. The mole fractions of the N2 (NMF) ingredient are set to be 0.01%, 0.1% and 1% in three cases, respectively. It is found that in each case, the plasma bullet accelerates with time to a peak velocity after it exits the nozzle and then decreases until getting to the treated surface, and that the velocity of the plasma bullet increases at each time moment with the peak value changing from 0.72×10^6 m/s to 0.80×10^6 m/s but then drops more sharply when the NMF varies from 0.01% to 1%. Besides, the electron impact ionizations of helium neutrals and nitrogen molecules are found to have key influences on the propagation of a plasma bullet instead of the penning ionization.