Asset-backed securities are developed through complex processes such as asset restructuring and credit enhancement.Therefore,the information asymmetry between issuers and investors is greater compared to traditional s...Asset-backed securities are developed through complex processes such as asset restructuring and credit enhancement.Therefore,the information asymmetry between issuers and investors is greater compared to traditional securities,which imposes higher requirements on information disclosure for asset-backed securities.Asset-backed securities have characteristics such as diversified disclosers,differentiated disclosure content,and specialized risk factors.China has already formulated a series of rules and regulations regarding information disclosure of asset-backed securities.It is imperative to develop specialized laws and regulations for asset-backed securities,encompass original equity holders and credit enhancement agencies as information disclosers,incorporate information such as underlying asset details,cash flow projections,and credit ratings and enhancements into the disclosure content,and improve the legal liability rules to effectively address false disclosures.展开更多
Creditors,such as banks,often use disclosed environmental information to assess a company’s environmental risk and ensure the safety of debt funds.Consequently,carbon disclosures have become an important consideratio...Creditors,such as banks,often use disclosed environmental information to assess a company’s environmental risk and ensure the safety of debt funds.Consequently,carbon disclosures have become an important consideration for creditors when making investments.This study explores the relationship between carbon disclosure and debt financing costs using data on listed companies from 2008 to 2019.The results show that carbon disclosure can reduce the debt financing costs of enterprises,and that this influence is more significant for private companies than for state-owned enterprises.Instrumental variables and Propensity Score Matching(PSM)were used to evaluate the robustness of negative relationships.Furthermore,carbon disclosure has a more significant impact on debt costs with less environmental supervision pressure,weak residents’environmental awareness,and weak product market competition.These findings provide guidance for companies’carbon information disclosure and support the establishment of official carbon disclosure standards.展开更多
Public companies in the United States are required to file annual reports(i.e.,Form 10-K)and disclose,among other things,the risk factors that may harm their stock price.The risk of a pandemic was well-known before th...Public companies in the United States are required to file annual reports(i.e.,Form 10-K)and disclose,among other things,the risk factors that may harm their stock price.The risk of a pandemic was well-known before the recent crisis,and we now know that the initial impact on many shareholders was significant and negative.To what extent did managers forewarn their shareholders about this valuation risk?We examine all 10-K filings from 2018,before any knowledge of the current pandemic,and find that less than 21%of them contain any reference to pandemic-related terms.Given the management’s presumed in-depth knowledge of their business and the general awareness that pandemics have been identified as a significant global risk for at least the past decade,this number should have been higher.We find an unexpectedly posi-tive correlation(0.137)between the use of pandemic-related words in annual reports and realized stock returns during the actual pandemic at the industry level.Some industries most severely impacted by COVID-19 barely mentioned pandemic risk in their financial disclosures to shareholders,indicating that managers were ineffective in highlighting their exposure to pandemic risks to investors.展开更多
We document the effect of the 2007/2008 financial crisis on the volume and the quality of enterprise risk management (ERM) disclosure in the annual reports of the largest US banks, and analyze its determinants. Usin...We document the effect of the 2007/2008 financial crisis on the volume and the quality of enterprise risk management (ERM) disclosure in the annual reports of the largest US banks, and analyze its determinants. Using a content analysis approach of the annual reports form 10-K for the years 2006, 2007, 2008, and 2009, we find that the ERM disclosure is significantly and positively associated with the crisis, bank size, board independence, duality and significantly and negatively associated with profitability, leverage, and board size. This paper seeks to fill a gap in the literature by investigating the effect of the crisis on ERM disclosure in the US banking sector context, and gives an insight into the factors affecting risk disclosure practices during the financial crisis.展开更多
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr...BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.展开更多
Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a ...Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a modular risk evaluation model based on a fuzzy fault tree.First,through the analysis of the main process oftree down and combining the Offshore&Onshore Reliability Data(OREDA)failure statistics and the operation procedure and the data provided by the job,the fault tree model of risk analysis of the tree down installation was established.Then,by introducing the natural language of expert comprehensive evaluation and combining fuzzy principles,quantitative analysis was carried out,and the fuzzy number was used to calculate the failure probability of a basic event and the occurrence probability of a top event.Finally,through a sensitivity analysis of basic events,the basic events of top events significantly affected were determined,and risk control and prevention measures for the corresponding high-risk factors were proposed for subsea horizontal X-tree down installation.展开更多
Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicato...Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.展开更多
HIV status disclosure to partners is critical in improving the health and well-being of mother-infant dyad in the prevention of HIV transmission from mother to child (PMTCT) program. This study assesses the HIV disclo...HIV status disclosure to partners is critical in improving the health and well-being of mother-infant dyad in the prevention of HIV transmission from mother to child (PMTCT) program. This study assesses the HIV disclosure rate to intimate partners, associated factors, and outcomes among women in the PMTCT program in two large HIV clinics in Abuja, Nigeria. A descriptive cross-sectional study employed a multi-stage sampling technique in selecting 220 pregnant women enrolled in PMTCT care in two clinics. Outcomes measures include HIV status disclosure to intimate partner, women’s viral suppression status (suppressed < 1000 copies/mL, unsuppressed ≥ 1000 copies/mL), and previous MTCT experience. Exposure variables include the participant’s socio-demographic characteristics and HIV care history. Data were presented using frequency tables. Simple and multivariate logistic regression was done to ascertain the predictors of HIV status disclosure and assess the association between HIV disclosure, viral suppression, and MTCT experience at a p-value of less than 0.05. Only 205 (96.7%) entries were completed and analyzed A larger percentage of the participants were married women, 158 (77.1%), within the age group 26 - 35 years (53.3%). Women’s HIV status disclosure rate to intimate partners was 49.3% (101/205). Factors associated with HIV disclosure rate to intimate partners at the univariate level were the participant’s age, Christian religion [COR: 1.80, 95%CI: 1.04 - 3.21, p = 0.04], full employment [COR: 1.92, 95%CI: 1.10 - 3.34, p = 0.02], HIV positivity prior to PMTCT enrollment [COR: 2.88, 95%CI: 1.26 - 6.59, p < 0.01], duration on antiretroviral therapy [COR: 1.07, 95%CI: 1.01 - 1.13, p = 0.03], and knowledge of partner’s HIV status [COR: 0.20, 95%CI: 0.08 - 0.51, p < 0.01]. Only HIV positivity prior to PMTCT enrollment [AOR: 3.27, 95%CI: 1.23 - 8.70, p < 0.01] and awareness of the partner’s HIV status, [AOR: 0.17, 95%CI: 0.06 - 0.49, p < 0.01] were significant predictors of HIV status disclosure after controlling for confounder. The two study outcomes;women’s viral suppression and MTCT experience were not significantly associated with participants’ HIV status disclosure to intimate partners. Our study shows that HIV disclosure to intimate partners is still a big challenge among pregnant women in PMTCT settings in Nigeria, with awareness of the partner’s HIV status and the type of patient enrollment in the PMTCT setting being the two strong predictors of pregnant women’s HIV disclosure status to partners.展开更多
BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages ...BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.展开更多
Cardiovascular disease(CVD)has gradually become one of the main causes of harm to the life and health of residents.Exploring the influencing factors and risk assessment methods of CVD has become a general trend.In thi...Cardiovascular disease(CVD)has gradually become one of the main causes of harm to the life and health of residents.Exploring the influencing factors and risk assessment methods of CVD has become a general trend.In this paper,a machine learning-based decision-making mechanism for risk assessment of CVD is designed.In this mechanism,the logistics regression analysismethod and factor analysismodel are used to select age,obesity degree,blood pressure,blood fat,blood sugar,smoking status,drinking status,and exercise status as the main pathogenic factors of CVD,and an index systemof risk assessment for CVD is established.Then,a two-stage model combining K-means cluster analysis and random forest(RF)is proposed to evaluate and predict the risk of CVD,and the predicted results are compared with the methods of Bayesian discrimination,K-means cluster analysis and RF.The results show that thepredictioneffect of theproposedtwo-stagemodel is better than that of the comparedmethods.Moreover,several suggestions for the government,the medical industry and the public are provided based on the research results.展开更多
With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of inv...With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative.展开更多
Objective: Patients with radioactive iodine-refractory differentiated thyroid cancer(RAIR-DTC) are often diagnosed with delay and constrained to limited treatment options. The correlation between RAI refractoriness an...Objective: Patients with radioactive iodine-refractory differentiated thyroid cancer(RAIR-DTC) are often diagnosed with delay and constrained to limited treatment options. The correlation between RAI refractoriness and the underlying genetic characteristics has not been extensively studied.Methods: Adult patients with distant metastatic DTC were enrolled and assigned to undergo next-generation sequencing of a customized 26-gene panel(Thyro Lead). Patients were classified into RAIR-DTC or non-RAIR groups to determine the differences in clinicopathological and molecular characteristics. Molecular risk stratification(MRS) was constructed based on the association between molecular alterations identified and RAI refractoriness, and the results were classified as high, intermediate or low MRS.Results: A total of 220 patients with distant metastases were included, 63.2% of whom were identified as RAIRDTC. Genetic alterations were identified in 90% of all the patients, with BRAF(59.7% vs. 17.3%), TERT promoter(43.9% vs. 7.4%), and TP53 mutations(11.5% vs. 3.7%) being more prevalent in the RAIR-DTC group than in the non-RAIR group, except for RET fusions(15.8% vs. 39.5%), which had the opposite pattern. BRAF and TERT promoter are independent predictors of RAIR-DTC, accounting for 67.6% of patients with RAIR-DTC. MRS was strongly associated with RAI refractoriness(P<0.001), with an odds ratio(OR) of high to low MRS of 7.52 [95%confidence interval(95% CI), 3.96-14.28;P<0.001] and an OR of intermediate to low MRS of 3.20(95% CI,1.01-10.14;P=0.041).Conclusions: Molecular alterations were associated with RAI refractoriness, with BRAF and TERT promoter mutations being the predominant contributors, followed by TP53 and DICER1 mutations. MRS might serve as a valuable tool for both prognosticating clinical outcomes and directing precision-based therapeutic interventions.展开更多
BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some ...BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups.展开更多
BACKGROUND Age is a significant risk factor of diabetes mellitus(DM).With the develop of population aging,the incidence of DM remains increasing.Understanding the epidemiology of DM among elderly individuals in a cert...BACKGROUND Age is a significant risk factor of diabetes mellitus(DM).With the develop of population aging,the incidence of DM remains increasing.Understanding the epidemiology of DM among elderly individuals in a certain area contributes to the DM interventions for the local elderly individuals with high risk of DM.AIM To explore the prevalence of DM among elderly individuals in the Lugu community and analyze the related risk factors to provide a valid scientific basis for the health management of elderly individuals.METHODS A total of 4816 elderly people who came to the community for physical examination were retrospectively analyzed.The prevalence of DM among the elderly was calculated.The individuals were divided into a DM group and a non-DM group according to the diagnosis of DM to compare the differences in diastolic blood pressure(DBP)and systolic blood pressure(SBP),fasting blood glucose,body mass index(BMI),waist-to-hip ratio(WHR)and incidence of hypertension(HT),coronary heart disease(CHD),and chronic kidney disease(CKD).RESULTS DM was diagnosed in 32.70%of the 4816 elderly people.The BMI of the DM group(25.16±3.35)was greater than that of the non-DM group(24.61±3.78).The WHR was 0.90±0.04 in the non-DM group and 0.90±0.03 in the DM group,with no significant difference.The left SBP and SBP in the DM group were 137.9 mmHg±11.92 mmHg and 69.95 mmHg±7.75 mmHg,respectively,while they were 126.6 mmHg±12.44 mmHg and 71.15 mmHg±12.55 mmHg,respectively,in the non-DM group.These findings indicate higher SBP and lower DBP in DM patients than in those without DM.In the DM group,1274 patients were diagnosed with HT,accounting for 80.89%.Among the 3241 non-DM patients,1743(53.78%)were hypertensive and 1498(46.22%)were nonhypertensive.The DM group had more cases of HT than did the non-DM group.There were more patients with CHD or CKD in the DM group than in the non-DM group.There were more patients who drank alcohol more frequently(≥3 times)in the DM group than in the non-DM group.CONCLUSION Older adults in the Lugu community are at a greater risk of DM.In elderly individuals,DM is closely related to high BMI and HT,CHD,and CKD.Physical examinations should be actively carried out for elderly people to determine their BMI,SBP,DBP,and other signs,and sufficient attention should be given to abnormalities in the above signs before further diagnosis.展开更多
The advancement of information technology has improved the delivery of nancial services by the introduction of Financial Technology(FinTech).To enhance their customer satisfaction,Fintech companies leverage articial i...The advancement of information technology has improved the delivery of nancial services by the introduction of Financial Technology(FinTech).To enhance their customer satisfaction,Fintech companies leverage articial intelligence(AI)to collect ne-grained data about individuals,which enables them to provide more intelligent and customized services.However,although visions thereof promise to make customers’lives easier,they also raise major security and privacy concerns for their users.Differential privacy(DP)is a common privacy-preserving data publishing technique that is proved to ensure a high level of privacy preservation.However,an important concern arises from the trade-off between the data utility the risk of data disclosure(RoD),which has not been well investigated.In this paper,to address this challenge,we propose data-dependent approaches for evaluating whether the sufcient privacy is guaranteed in differentially private data release.At the same time,by taking into account the utility of the differentially private synthetic dataset,we present a data-dependent algorithm that,through a curve tting technique,measures the error of the statistical result imposed to the original dataset due to the injection of random noise.Moreover,we also propose a method that ensures a proper privacy budget,i.e.,will be chosen so as to maintain the trade-off between the privacy and utility.Our comprehensive experimental analysis proves both the efciency and estimation accuracy of the proposed algorithms.展开更多
BACKGROUND Liver transplantation(LT)is the only curative treatment for end-stage liver disease.However,LT recipients are susceptible to infection,which is the leading cause of early mortality after LT.Klebsiella pneum...BACKGROUND Liver transplantation(LT)is the only curative treatment for end-stage liver disease.However,LT recipients are susceptible to infection,which is the leading cause of early mortality after LT.Klebsiella pneumoniae infections(KPIs)in the bloodstream are common in LT recipients.We hypothesized that KPIs and carbapenemresistant Klebsiella pneumoniae(CRKP)infections may affect the outcomes of LT recipients.AIM To assess KPI incidence,timing,distribution,drug resistance,and risk factors following LT and its association with outcomes.METHODS This retrospective study included 406 patients undergoing LT at The Third Xiangya Hospital of Central South University,a tertiary hospital,from January 2015 to January 2023.We investigated the risk factors for KPIs and assessed the impact of KPIs and CRKP infections on the prognosis of LT recipients using logistic regression analysis.RESULTS KPI incidence was 7.9%(n=32),with lung/thoracic cavity the most frequent site of infection;the median time from LT to KPI onset was 7.5 d.Of 44 Klebsiella pneumoniae isolates,43(97.7%)and 34(77.3%)were susceptible to polymyxin B or ceftazidime/avibactam and tigecycline,respectively;>70%were resistant to piperacillin/tazobactam,ceftazidime,cefepime,aztreonam,meropenem,and levofloxacin.Female sex[odds ratio(OR)=2.827,95%confidence interval(CI):1.256-6.364;P=0.012],pre-LT diabetes(OR=2.794,95%CI:1.070-7.294;P=0.036),day 1 post-LT alanine aminotransferase(ALT)levels≥1500 U/L(OR=3.645,95%CI:1.671-7.950;P=0.001),and post-LT urethral catheter duration over 4 d(OR=2.266,95%CI:1.016-5.054;P=0.046)were risk factors for KPI.CRKP infections,but not KPIs,were risk factors for 6-month all-cause mortality post-LT.CONCLUSION KPIs occur frequently and rapidly after LT.Risk factors include female sex,pre-LT diabetes,increased post-LT ALT levels,and urethral catheter duration.CRKP infections,and not KPIs,affect mortality.展开更多
Adolescents are considered one of the most vulnerable groups affected by suicide.Rapid changes in adolescents’physical and mental states,as well as in their lives,significantly and undeniably increase the risk of sui...Adolescents are considered one of the most vulnerable groups affected by suicide.Rapid changes in adolescents’physical and mental states,as well as in their lives,significantly and undeniably increase the risk of suicide.Psychological,social,family,individual,and environmental factors are important risk factors for suicidal behavior among teenagers and may contribute to suicide risk through various direct,indirect,or combined pathways.Social-emotional learning is considered a powerful intervention measure for addressing the crisis of adolescent suicide.When deliberately cultivated,fostered,and enhanced,selfawareness,self-management,social awareness,interpersonal skills,and responsible decision-making,as the five core competencies of social-emotional learning,can be used to effectively target various risk factors for adolescent suicide and provide necessary mental and interpersonal support.Among numerous suicide intervention methods,school-based interventions based on social-emotional competence have shown great potential in preventing and addressing suicide risk factors in adolescents.The characteristics of school-based interventions based on social-emotional competence,including their appropriateness,necessity,cost-effectiveness,comprehensiveness,and effectiveness,make these interventions an important means of addressing the crisis of adolescent suicide.To further determine the potential of school-based interventions based on social-emotional competence and better address the issue of adolescent suicide,additional financial support should be provided,the combination of socialemotional learning and other suicide prevention programs within schools should be fully leveraged,and cooperation between schools and families,society,and other environments should be maximized.These efforts should be considered future research directions.展开更多
BACKGROUND Prediabetes is a well-established risk factor for major adverse cardiac and cerebrovascular events(MACCE).However,the relationship between prediabetes and MACCE in atrial fibrillation(AF)patients has not be...BACKGROUND Prediabetes is a well-established risk factor for major adverse cardiac and cerebrovascular events(MACCE).However,the relationship between prediabetes and MACCE in atrial fibrillation(AF)patients has not been extensively studied.Therefore,this study aimed to establish a link between prediabetes and MACCE in AF patients.AIM To investigate a link between prediabetes and MACCE in AF patients.METHODS We used the National Inpatient Sample(2019)and relevant ICD-10 CM codes to identify hospitalizations with AF and categorized them into groups with and without prediabetes,excluding diabetics.The primary outcome was MACCE(all-cause inpatient mortality,cardiac arrest including ventricular fibrillation,and stroke)in AF-related hospitalizations.RESULTS Of the 2965875 AF-related hospitalizations for MACCE,47505(1.6%)were among patients with prediabetes.The prediabetes cohort was relatively younger(median 75 vs 78 years),and often consisted of males(56.3%vs 51.4%),blacks(9.8%vs 7.9%),Hispanics(7.3%vs 4.3%),and Asians(4.7%vs 1.6%)than the non-prediabetic cohort(P<0.001).The prediabetes group had significantly higher rates of hypertension,hyperlipidemia,smoking,obesity,drug abuse,prior myocardial infarction,peripheral vascular disease,and hyperthyroidism(all P<0.05).The prediabetes cohort was often discharged routinely(51.1%vs 41.1%),but more frequently required home health care(23.6%vs 21.0%)and had higher costs.After adjusting for baseline characteristics or comorbidities,the prediabetes cohort with AF admissions showed a higher rate and significantly higher odds of MACCE compared to the non-prediabetic cohort[18.6%vs 14.7%,odds ratio(OR)1.34,95%confidence interval 1.26-1.42,P<0.001].On subgroup analyses,males had a stronger association(aOR 1.43)compared to females(aOR 1.22),whereas on the race-wise comparison,Hispanics(aOR 1.43)and Asians(aOR 1.36)had a stronger association with MACCE with prediabetes vs whites(aOR 1.33)and blacks(aOR 1.21).CONCLUSION This population-based study found a significant association between prediabetes and MACCE in AF patients.Therefore,there is a need for further research to actively screen and manage prediabetes in AF to prevent MACCE.展开更多
A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct ...A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct or indirect potable reuse options. These options have garnered more interest as a result of water supply limitations in many urban areas. This risk assessment was developed from a risk assessment developed at the University of Miami in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse and injection wells were deemed to have the lowest risk in the most recent study by FAU. However, the injection well option may not be available everywhere. As a result, a more local means to assess exposure risk is needed. This paper outlines the process to evaluate the public health risks associated with available disposal alternatives which may be very limited in some areas. The development of exposure pathways can help local decision-makers define the challenges, and support later expert level analysis upon which public health decisions are based.展开更多
文摘Asset-backed securities are developed through complex processes such as asset restructuring and credit enhancement.Therefore,the information asymmetry between issuers and investors is greater compared to traditional securities,which imposes higher requirements on information disclosure for asset-backed securities.Asset-backed securities have characteristics such as diversified disclosers,differentiated disclosure content,and specialized risk factors.China has already formulated a series of rules and regulations regarding information disclosure of asset-backed securities.It is imperative to develop specialized laws and regulations for asset-backed securities,encompass original equity holders and credit enhancement agencies as information disclosers,incorporate information such as underlying asset details,cash flow projections,and credit ratings and enhancements into the disclosure content,and improve the legal liability rules to effectively address false disclosures.
文摘Creditors,such as banks,often use disclosed environmental information to assess a company’s environmental risk and ensure the safety of debt funds.Consequently,carbon disclosures have become an important consideration for creditors when making investments.This study explores the relationship between carbon disclosure and debt financing costs using data on listed companies from 2008 to 2019.The results show that carbon disclosure can reduce the debt financing costs of enterprises,and that this influence is more significant for private companies than for state-owned enterprises.Instrumental variables and Propensity Score Matching(PSM)were used to evaluate the robustness of negative relationships.Furthermore,carbon disclosure has a more significant impact on debt costs with less environmental supervision pressure,weak residents’environmental awareness,and weak product market competition.These findings provide guidance for companies’carbon information disclosure and support the establishment of official carbon disclosure standards.
文摘Public companies in the United States are required to file annual reports(i.e.,Form 10-K)and disclose,among other things,the risk factors that may harm their stock price.The risk of a pandemic was well-known before the recent crisis,and we now know that the initial impact on many shareholders was significant and negative.To what extent did managers forewarn their shareholders about this valuation risk?We examine all 10-K filings from 2018,before any knowledge of the current pandemic,and find that less than 21%of them contain any reference to pandemic-related terms.Given the management’s presumed in-depth knowledge of their business and the general awareness that pandemics have been identified as a significant global risk for at least the past decade,this number should have been higher.We find an unexpectedly posi-tive correlation(0.137)between the use of pandemic-related words in annual reports and realized stock returns during the actual pandemic at the industry level.Some industries most severely impacted by COVID-19 barely mentioned pandemic risk in their financial disclosures to shareholders,indicating that managers were ineffective in highlighting their exposure to pandemic risks to investors.
文摘We document the effect of the 2007/2008 financial crisis on the volume and the quality of enterprise risk management (ERM) disclosure in the annual reports of the largest US banks, and analyze its determinants. Using a content analysis approach of the annual reports form 10-K for the years 2006, 2007, 2008, and 2009, we find that the ERM disclosure is significantly and positively associated with the crisis, bank size, board independence, duality and significantly and negatively associated with profitability, leverage, and board size. This paper seeks to fill a gap in the literature by investigating the effect of the crisis on ERM disclosure in the US banking sector context, and gives an insight into the factors affecting risk disclosure practices during the financial crisis.
基金Supported by Science and Technology Support Program of Qiandongnan Prefecture,No.Qiandongnan Sci-Tech Support[2021]12Guizhou Province High-Level Innovative Talent Training Program,No.Qiannan Thousand Talents[2022]201701.
文摘BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.
基金financially supported by the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Production System,Topic 4:Research on Subsea X-Tree and Wellhead Offshore Testing Technology(Grant No.MC-201901-S01-04)the Key Research and Development Program of Shandong Province(Major Innovation Project)(Grant Nos.2022CXGC020405,2023CXGC010415)。
文摘Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a modular risk evaluation model based on a fuzzy fault tree.First,through the analysis of the main process oftree down and combining the Offshore&Onshore Reliability Data(OREDA)failure statistics and the operation procedure and the data provided by the job,the fault tree model of risk analysis of the tree down installation was established.Then,by introducing the natural language of expert comprehensive evaluation and combining fuzzy principles,quantitative analysis was carried out,and the fuzzy number was used to calculate the failure probability of a basic event and the occurrence probability of a top event.Finally,through a sensitivity analysis of basic events,the basic events of top events significantly affected were determined,and risk control and prevention measures for the corresponding high-risk factors were proposed for subsea horizontal X-tree down installation.
基金National Natural Science Foundation of China(Nos.42171444,42301516)Beijing Natural Science Foundation Project-Municipal Education Commission Joint Fund Project(No.KZ202110016021)Beijing Municipal Education Commission Scientific Research Project-Science and Technology Plan General Project(No.KM202110016005).
文摘Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.
文摘HIV status disclosure to partners is critical in improving the health and well-being of mother-infant dyad in the prevention of HIV transmission from mother to child (PMTCT) program. This study assesses the HIV disclosure rate to intimate partners, associated factors, and outcomes among women in the PMTCT program in two large HIV clinics in Abuja, Nigeria. A descriptive cross-sectional study employed a multi-stage sampling technique in selecting 220 pregnant women enrolled in PMTCT care in two clinics. Outcomes measures include HIV status disclosure to intimate partner, women’s viral suppression status (suppressed < 1000 copies/mL, unsuppressed ≥ 1000 copies/mL), and previous MTCT experience. Exposure variables include the participant’s socio-demographic characteristics and HIV care history. Data were presented using frequency tables. Simple and multivariate logistic regression was done to ascertain the predictors of HIV status disclosure and assess the association between HIV disclosure, viral suppression, and MTCT experience at a p-value of less than 0.05. Only 205 (96.7%) entries were completed and analyzed A larger percentage of the participants were married women, 158 (77.1%), within the age group 26 - 35 years (53.3%). Women’s HIV status disclosure rate to intimate partners was 49.3% (101/205). Factors associated with HIV disclosure rate to intimate partners at the univariate level were the participant’s age, Christian religion [COR: 1.80, 95%CI: 1.04 - 3.21, p = 0.04], full employment [COR: 1.92, 95%CI: 1.10 - 3.34, p = 0.02], HIV positivity prior to PMTCT enrollment [COR: 2.88, 95%CI: 1.26 - 6.59, p < 0.01], duration on antiretroviral therapy [COR: 1.07, 95%CI: 1.01 - 1.13, p = 0.03], and knowledge of partner’s HIV status [COR: 0.20, 95%CI: 0.08 - 0.51, p < 0.01]. Only HIV positivity prior to PMTCT enrollment [AOR: 3.27, 95%CI: 1.23 - 8.70, p < 0.01] and awareness of the partner’s HIV status, [AOR: 0.17, 95%CI: 0.06 - 0.49, p < 0.01] were significant predictors of HIV status disclosure after controlling for confounder. The two study outcomes;women’s viral suppression and MTCT experience were not significantly associated with participants’ HIV status disclosure to intimate partners. Our study shows that HIV disclosure to intimate partners is still a big challenge among pregnant women in PMTCT settings in Nigeria, with awareness of the partner’s HIV status and the type of patient enrollment in the PMTCT setting being the two strong predictors of pregnant women’s HIV disclosure status to partners.
文摘BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.
基金This work is supported by the National Natural Science Foundation of China(Nos.72071150,71871174).
文摘Cardiovascular disease(CVD)has gradually become one of the main causes of harm to the life and health of residents.Exploring the influencing factors and risk assessment methods of CVD has become a general trend.In this paper,a machine learning-based decision-making mechanism for risk assessment of CVD is designed.In this mechanism,the logistics regression analysismethod and factor analysismodel are used to select age,obesity degree,blood pressure,blood fat,blood sugar,smoking status,drinking status,and exercise status as the main pathogenic factors of CVD,and an index systemof risk assessment for CVD is established.Then,a two-stage model combining K-means cluster analysis and random forest(RF)is proposed to evaluate and predict the risk of CVD,and the predicted results are compared with the methods of Bayesian discrimination,K-means cluster analysis and RF.The results show that thepredictioneffect of theproposedtwo-stagemodel is better than that of the comparedmethods.Moreover,several suggestions for the government,the medical industry and the public are provided based on the research results.
基金the financial support from the National Natural Science Foundation of China(71934004)Key Projects of the National Social Science Foundation(23AZD065)the Project of the CNOOC Energy Economics Institute(EEI-2022-IESA0009)。
文摘With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative.
基金supported by the Project on InterGovernmental International Scientific and Technological Innovation Cooperation in National Key Projects of Research and Development Plan (No. 2019YFE0106400)the National Natural Science Foundation of China (No. 81771875)。
文摘Objective: Patients with radioactive iodine-refractory differentiated thyroid cancer(RAIR-DTC) are often diagnosed with delay and constrained to limited treatment options. The correlation between RAI refractoriness and the underlying genetic characteristics has not been extensively studied.Methods: Adult patients with distant metastatic DTC were enrolled and assigned to undergo next-generation sequencing of a customized 26-gene panel(Thyro Lead). Patients were classified into RAIR-DTC or non-RAIR groups to determine the differences in clinicopathological and molecular characteristics. Molecular risk stratification(MRS) was constructed based on the association between molecular alterations identified and RAI refractoriness, and the results were classified as high, intermediate or low MRS.Results: A total of 220 patients with distant metastases were included, 63.2% of whom were identified as RAIRDTC. Genetic alterations were identified in 90% of all the patients, with BRAF(59.7% vs. 17.3%), TERT promoter(43.9% vs. 7.4%), and TP53 mutations(11.5% vs. 3.7%) being more prevalent in the RAIR-DTC group than in the non-RAIR group, except for RET fusions(15.8% vs. 39.5%), which had the opposite pattern. BRAF and TERT promoter are independent predictors of RAIR-DTC, accounting for 67.6% of patients with RAIR-DTC. MRS was strongly associated with RAI refractoriness(P<0.001), with an odds ratio(OR) of high to low MRS of 7.52 [95%confidence interval(95% CI), 3.96-14.28;P<0.001] and an OR of intermediate to low MRS of 3.20(95% CI,1.01-10.14;P=0.041).Conclusions: Molecular alterations were associated with RAI refractoriness, with BRAF and TERT promoter mutations being the predominant contributors, followed by TP53 and DICER1 mutations. MRS might serve as a valuable tool for both prognosticating clinical outcomes and directing precision-based therapeutic interventions.
基金The Shanxi Provincial Administration of Traditional Chinese Medicine,No.2023ZYYDA2005.
文摘BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups.
基金Supported by the Capital’s Funds for Health Improvement and Research,No.2023-3S-002.
文摘BACKGROUND Age is a significant risk factor of diabetes mellitus(DM).With the develop of population aging,the incidence of DM remains increasing.Understanding the epidemiology of DM among elderly individuals in a certain area contributes to the DM interventions for the local elderly individuals with high risk of DM.AIM To explore the prevalence of DM among elderly individuals in the Lugu community and analyze the related risk factors to provide a valid scientific basis for the health management of elderly individuals.METHODS A total of 4816 elderly people who came to the community for physical examination were retrospectively analyzed.The prevalence of DM among the elderly was calculated.The individuals were divided into a DM group and a non-DM group according to the diagnosis of DM to compare the differences in diastolic blood pressure(DBP)and systolic blood pressure(SBP),fasting blood glucose,body mass index(BMI),waist-to-hip ratio(WHR)and incidence of hypertension(HT),coronary heart disease(CHD),and chronic kidney disease(CKD).RESULTS DM was diagnosed in 32.70%of the 4816 elderly people.The BMI of the DM group(25.16±3.35)was greater than that of the non-DM group(24.61±3.78).The WHR was 0.90±0.04 in the non-DM group and 0.90±0.03 in the DM group,with no significant difference.The left SBP and SBP in the DM group were 137.9 mmHg±11.92 mmHg and 69.95 mmHg±7.75 mmHg,respectively,while they were 126.6 mmHg±12.44 mmHg and 71.15 mmHg±12.55 mmHg,respectively,in the non-DM group.These findings indicate higher SBP and lower DBP in DM patients than in those without DM.In the DM group,1274 patients were diagnosed with HT,accounting for 80.89%.Among the 3241 non-DM patients,1743(53.78%)were hypertensive and 1498(46.22%)were nonhypertensive.The DM group had more cases of HT than did the non-DM group.There were more patients with CHD or CKD in the DM group than in the non-DM group.There were more patients who drank alcohol more frequently(≥3 times)in the DM group than in the non-DM group.CONCLUSION Older adults in the Lugu community are at a greater risk of DM.In elderly individuals,DM is closely related to high BMI and HT,CHD,and CKD.Physical examinations should be actively carried out for elderly people to determine their BMI,SBP,DBP,and other signs,and sufficient attention should be given to abnormalities in the above signs before further diagnosis.
基金Chia-Mu Yu has been initiated within the project MOST 110-2636-E-009-018 of Ministry of Science and Technology,Taiwan https://www.most.gov.tw/Tooskasupported by the UK Royal Society Award(Grant Number IEC\R3\183047,https://royalsociety.org/).
文摘The advancement of information technology has improved the delivery of nancial services by the introduction of Financial Technology(FinTech).To enhance their customer satisfaction,Fintech companies leverage articial intelligence(AI)to collect ne-grained data about individuals,which enables them to provide more intelligent and customized services.However,although visions thereof promise to make customers’lives easier,they also raise major security and privacy concerns for their users.Differential privacy(DP)is a common privacy-preserving data publishing technique that is proved to ensure a high level of privacy preservation.However,an important concern arises from the trade-off between the data utility the risk of data disclosure(RoD),which has not been well investigated.In this paper,to address this challenge,we propose data-dependent approaches for evaluating whether the sufcient privacy is guaranteed in differentially private data release.At the same time,by taking into account the utility of the differentially private synthetic dataset,we present a data-dependent algorithm that,through a curve tting technique,measures the error of the statistical result imposed to the original dataset due to the injection of random noise.Moreover,we also propose a method that ensures a proper privacy budget,i.e.,will be chosen so as to maintain the trade-off between the privacy and utility.Our comprehensive experimental analysis proves both the efciency and estimation accuracy of the proposed algorithms.
基金approved by the Ethics Committee of the Third Xiangya Hospital in accordance with the Declaration of Helsinki(No.24029).
文摘BACKGROUND Liver transplantation(LT)is the only curative treatment for end-stage liver disease.However,LT recipients are susceptible to infection,which is the leading cause of early mortality after LT.Klebsiella pneumoniae infections(KPIs)in the bloodstream are common in LT recipients.We hypothesized that KPIs and carbapenemresistant Klebsiella pneumoniae(CRKP)infections may affect the outcomes of LT recipients.AIM To assess KPI incidence,timing,distribution,drug resistance,and risk factors following LT and its association with outcomes.METHODS This retrospective study included 406 patients undergoing LT at The Third Xiangya Hospital of Central South University,a tertiary hospital,from January 2015 to January 2023.We investigated the risk factors for KPIs and assessed the impact of KPIs and CRKP infections on the prognosis of LT recipients using logistic regression analysis.RESULTS KPI incidence was 7.9%(n=32),with lung/thoracic cavity the most frequent site of infection;the median time from LT to KPI onset was 7.5 d.Of 44 Klebsiella pneumoniae isolates,43(97.7%)and 34(77.3%)were susceptible to polymyxin B or ceftazidime/avibactam and tigecycline,respectively;>70%were resistant to piperacillin/tazobactam,ceftazidime,cefepime,aztreonam,meropenem,and levofloxacin.Female sex[odds ratio(OR)=2.827,95%confidence interval(CI):1.256-6.364;P=0.012],pre-LT diabetes(OR=2.794,95%CI:1.070-7.294;P=0.036),day 1 post-LT alanine aminotransferase(ALT)levels≥1500 U/L(OR=3.645,95%CI:1.671-7.950;P=0.001),and post-LT urethral catheter duration over 4 d(OR=2.266,95%CI:1.016-5.054;P=0.046)were risk factors for KPI.CRKP infections,but not KPIs,were risk factors for 6-month all-cause mortality post-LT.CONCLUSION KPIs occur frequently and rapidly after LT.Risk factors include female sex,pre-LT diabetes,increased post-LT ALT levels,and urethral catheter duration.CRKP infections,and not KPIs,affect mortality.
文摘Adolescents are considered one of the most vulnerable groups affected by suicide.Rapid changes in adolescents’physical and mental states,as well as in their lives,significantly and undeniably increase the risk of suicide.Psychological,social,family,individual,and environmental factors are important risk factors for suicidal behavior among teenagers and may contribute to suicide risk through various direct,indirect,or combined pathways.Social-emotional learning is considered a powerful intervention measure for addressing the crisis of adolescent suicide.When deliberately cultivated,fostered,and enhanced,selfawareness,self-management,social awareness,interpersonal skills,and responsible decision-making,as the five core competencies of social-emotional learning,can be used to effectively target various risk factors for adolescent suicide and provide necessary mental and interpersonal support.Among numerous suicide intervention methods,school-based interventions based on social-emotional competence have shown great potential in preventing and addressing suicide risk factors in adolescents.The characteristics of school-based interventions based on social-emotional competence,including their appropriateness,necessity,cost-effectiveness,comprehensiveness,and effectiveness,make these interventions an important means of addressing the crisis of adolescent suicide.To further determine the potential of school-based interventions based on social-emotional competence and better address the issue of adolescent suicide,additional financial support should be provided,the combination of socialemotional learning and other suicide prevention programs within schools should be fully leveraged,and cooperation between schools and families,society,and other environments should be maximized.These efforts should be considered future research directions.
文摘BACKGROUND Prediabetes is a well-established risk factor for major adverse cardiac and cerebrovascular events(MACCE).However,the relationship between prediabetes and MACCE in atrial fibrillation(AF)patients has not been extensively studied.Therefore,this study aimed to establish a link between prediabetes and MACCE in AF patients.AIM To investigate a link between prediabetes and MACCE in AF patients.METHODS We used the National Inpatient Sample(2019)and relevant ICD-10 CM codes to identify hospitalizations with AF and categorized them into groups with and without prediabetes,excluding diabetics.The primary outcome was MACCE(all-cause inpatient mortality,cardiac arrest including ventricular fibrillation,and stroke)in AF-related hospitalizations.RESULTS Of the 2965875 AF-related hospitalizations for MACCE,47505(1.6%)were among patients with prediabetes.The prediabetes cohort was relatively younger(median 75 vs 78 years),and often consisted of males(56.3%vs 51.4%),blacks(9.8%vs 7.9%),Hispanics(7.3%vs 4.3%),and Asians(4.7%vs 1.6%)than the non-prediabetic cohort(P<0.001).The prediabetes group had significantly higher rates of hypertension,hyperlipidemia,smoking,obesity,drug abuse,prior myocardial infarction,peripheral vascular disease,and hyperthyroidism(all P<0.05).The prediabetes cohort was often discharged routinely(51.1%vs 41.1%),but more frequently required home health care(23.6%vs 21.0%)and had higher costs.After adjusting for baseline characteristics or comorbidities,the prediabetes cohort with AF admissions showed a higher rate and significantly higher odds of MACCE compared to the non-prediabetic cohort[18.6%vs 14.7%,odds ratio(OR)1.34,95%confidence interval 1.26-1.42,P<0.001].On subgroup analyses,males had a stronger association(aOR 1.43)compared to females(aOR 1.22),whereas on the race-wise comparison,Hispanics(aOR 1.43)and Asians(aOR 1.36)had a stronger association with MACCE with prediabetes vs whites(aOR 1.33)and blacks(aOR 1.21).CONCLUSION This population-based study found a significant association between prediabetes and MACCE in AF patients.Therefore,there is a need for further research to actively screen and manage prediabetes in AF to prevent MACCE.
文摘A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct or indirect potable reuse options. These options have garnered more interest as a result of water supply limitations in many urban areas. This risk assessment was developed from a risk assessment developed at the University of Miami in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse and injection wells were deemed to have the lowest risk in the most recent study by FAU. However, the injection well option may not be available everywhere. As a result, a more local means to assess exposure risk is needed. This paper outlines the process to evaluate the public health risks associated with available disposal alternatives which may be very limited in some areas. The development of exposure pathways can help local decision-makers define the challenges, and support later expert level analysis upon which public health decisions are based.