A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct fea...A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured,whereas the discontinuity of the velocity vector at the discrete time levels still remains.The computational cost is then obviously reduced, particularly,for material non-linear problems.Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed.Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.展开更多
In this paper, the full discrete discontinuous Galerkin finite element method to solove 2-dimensional first-order linear hyperbolic problem is considered. Two practical schemes, Euler scheme and Crank-Nicolson scheme,...In this paper, the full discrete discontinuous Galerkin finite element method to solove 2-dimensional first-order linear hyperbolic problem is considered. Two practical schemes, Euler scheme and Crank-Nicolson scheme, are constructed. For each of them, the stability and error estimation with optimal order approximation is established in the norm stronger than L-2-norm.展开更多
基金The project supported by the National Natural Science Foundation of China(19832010,50278012,10272027)the National Key Basic Research and Development Program(973 Program,2002CB412709)
文摘A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured,whereas the discontinuity of the velocity vector at the discrete time levels still remains.The computational cost is then obviously reduced, particularly,for material non-linear problems.Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed.Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.
文摘In this paper, the full discrete discontinuous Galerkin finite element method to solove 2-dimensional first-order linear hyperbolic problem is considered. Two practical schemes, Euler scheme and Crank-Nicolson scheme, are constructed. For each of them, the stability and error estimation with optimal order approximation is established in the norm stronger than L-2-norm.