When multiple distributed converters are integrated, the high frequency harmonics will randomly accumulate at the point of common coupling(PCC). This paper proposes a new fast global synchronous discontinuous pulse wi...When multiple distributed converters are integrated, the high frequency harmonics will randomly accumulate at the point of common coupling(PCC). This paper proposes a new fast global synchronous discontinuous pulse width modulation(GSDPWM) method of threephase inverters to effectively attenuate the high frequency current harmonics at PCC. Firstly, the basic principle and the realization method of GSDPWM for three-phase inverters are explained, which can be employed for different modulation types. Then a fast calculation method,which can equally derive the minimized total harmonic distortion(THD) of total current, is proposed to release the calculation burden. Finally, MATLAB simulations and experimental results are presented to verify the performance of GSDPWM.展开更多
This paper proposes a dual-frequency discontinuous space vector pulse width modulation(DFDSVPWM)for a five-phase voltage source inverter with harmonic injection.In this modulation,for dual-frequency voltage output and...This paper proposes a dual-frequency discontinuous space vector pulse width modulation(DFDSVPWM)for a five-phase voltage source inverter with harmonic injection.In this modulation,for dual-frequency voltage output and reduction of switching losses,two different zero-vector-inserted modes are flexibly employed by alternatively using two types of zero vectors.Based on the comparison with continuous SVPWM,the idea and principle of the proposed DFDSVPWM are analyzed and an example of PWM signals for one bridge is also presented.For switching losses analysis,the impact factors and the calculation method are investigated and the corresponding implementation is given as well.The simulation and experimental results from a prototype verify the correctness and effectiveness of the proposed modulation and it has the advantages of outputting dual-frequency voltage and reducing switching losses.展开更多
Two improved structures of high resolution digital pulse width modulator(DPWM) control circuit are proposed. Embedded digital clock manager(DCM) blocks and digital programmable delay circuits are employed as the basic...Two improved structures of high resolution digital pulse width modulator(DPWM) control circuit are proposed. Embedded digital clock manager(DCM) blocks and digital programmable delay circuits are employed as the basic resources to construct the field-programmable gate array(FPGA)-based DPWM implementations. Detailed schemes are illustrated and the circuits have been successfully implemented on the Artix-7 FPGA device developed by Xilinx. Experimental results show that when the basic clock operates at the frequency of 200 MHz, the resolutions of the two approaches can reach 625 ps and 500 ps, respectively. Besides,the presented schemes possess other merits including flexible resolution, strong versatility and relatively good stability.展开更多
文摘When multiple distributed converters are integrated, the high frequency harmonics will randomly accumulate at the point of common coupling(PCC). This paper proposes a new fast global synchronous discontinuous pulse width modulation(GSDPWM) method of threephase inverters to effectively attenuate the high frequency current harmonics at PCC. Firstly, the basic principle and the realization method of GSDPWM for three-phase inverters are explained, which can be employed for different modulation types. Then a fast calculation method,which can equally derive the minimized total harmonic distortion(THD) of total current, is proposed to release the calculation burden. Finally, MATLAB simulations and experimental results are presented to verify the performance of GSDPWM.
基金This work was supported in part by the National Natural Science Foundation of China(51507079)the China Postdoctoral Science Foundation Funded Project(2014M560421,2016T90454)the Fundamental Research Funds for the Central Universities(NJ20160046,NS2018025).
文摘This paper proposes a dual-frequency discontinuous space vector pulse width modulation(DFDSVPWM)for a five-phase voltage source inverter with harmonic injection.In this modulation,for dual-frequency voltage output and reduction of switching losses,two different zero-vector-inserted modes are flexibly employed by alternatively using two types of zero vectors.Based on the comparison with continuous SVPWM,the idea and principle of the proposed DFDSVPWM are analyzed and an example of PWM signals for one bridge is also presented.For switching losses analysis,the impact factors and the calculation method are investigated and the corresponding implementation is given as well.The simulation and experimental results from a prototype verify the correctness and effectiveness of the proposed modulation and it has the advantages of outputting dual-frequency voltage and reducing switching losses.
基金supported by the National Natural Science Foundation of China(61401204)the Fundamental Research Funds for the Central Universities(30916011319)+1 种基金the Technology Research and Development Program of Jiangsu Province(BY2015004-03)the Postdoctoral Science Foundation of Jiangsu Province(1501104C)
文摘Two improved structures of high resolution digital pulse width modulator(DPWM) control circuit are proposed. Embedded digital clock manager(DCM) blocks and digital programmable delay circuits are employed as the basic resources to construct the field-programmable gate array(FPGA)-based DPWM implementations. Detailed schemes are illustrated and the circuits have been successfully implemented on the Artix-7 FPGA device developed by Xilinx. Experimental results show that when the basic clock operates at the frequency of 200 MHz, the resolutions of the two approaches can reach 625 ps and 500 ps, respectively. Besides,the presented schemes possess other merits including flexible resolution, strong versatility and relatively good stability.