期刊文献+
共找到5,813篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing the resolution of sparse rock property measurements using machine learning and random field theory 被引量:1
1
作者 Jiawei Xie Jinsong Huang +3 位作者 Fuxiang Zhang Jixiang He Kaifeng Kang Yunqiang Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3924-3936,共13页
The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad... The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China. 展开更多
关键词 Wireline logs Core characterization Compressional wave travel time Machine learning Random field theory
下载PDF
Network Defense Decision-Making Based on Deep Reinforcement Learning and Dynamic Game Theory
2
作者 Huang Wanwei Yuan Bo +2 位作者 Wang Sunan Ding Yi Li Yuhua 《China Communications》 SCIE CSCD 2024年第9期262-275,共14页
Existing researches on cyber attackdefense analysis have typically adopted stochastic game theory to model the problem for solutions,but the assumption of complete rationality is used in modeling,ignoring the informat... Existing researches on cyber attackdefense analysis have typically adopted stochastic game theory to model the problem for solutions,but the assumption of complete rationality is used in modeling,ignoring the information opacity in practical attack and defense scenarios,and the model and method lack accuracy.To such problem,we investigate network defense policy methods under finite rationality constraints and propose network defense policy selection algorithm based on deep reinforcement learning.Based on graph theoretical methods,we transform the decision-making problem into a path optimization problem,and use a compression method based on service node to map the network state.On this basis,we improve the A3C algorithm and design the DefenseA3C defense policy selection algorithm with online learning capability.The experimental results show that the model and method proposed in this paper can stably converge to a better network state after training,which is faster and more stable than the original A3C algorithm.Compared with the existing typical approaches,Defense-A3C is verified its advancement. 展开更多
关键词 A3C cyber attack-defense analysis deep reinforcement learning stochastic game theory
下载PDF
Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms
3
作者 Maie Aboghazalah Passent El-kafrawy +3 位作者 Abdelmoty M.Ahmed Rasha Elnemr Belgacem Bouallegue Ayman El-sayed 《Computers, Materials & Continua》 SCIE EI 2024年第6期3855-3875,共21页
Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-s... Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments. 展开更多
关键词 ECG extraction ECG leads time series prior knowledge and arrhythmia chaos theory QRS complex analysis machine learning ECG classification
下载PDF
The Application of Reinforcement Theory in the Review Stage of English Teaching and Learning in Chinese Higher Vocational and Technical Colleges
4
作者 Keren Pan 《Journal of Contemporary Educational Research》 2024年第8期88-94,共7页
Reinforcement theory is a behavioral psychology theory proposed by Skinner,which has been widely applied in various fields such as management and education.Positive reinforcement and negative reinforcement are the two... Reinforcement theory is a behavioral psychology theory proposed by Skinner,which has been widely applied in various fields such as management and education.Positive reinforcement and negative reinforcement are the two types of reinforcement.By adopting these two different reinforcement methods appropriately,human behavior can develop in a positive direction.In the review stage of English teaching and learning in Chinese higher vocational and technical colleges,the use of different reinforcement methods based on various classes,individuals,conditions,and environments can effectively promote or change the behavior of teachers and students,thereby improving the effectiveness of the review. 展开更多
关键词 Reinforcement theory Higher vocational and technical colleges English teaching and learning REVIEW EFFECTIVENESS
下载PDF
College English Teaching Study Conducted by Discovery Learning Theory and Action Research——Take College English Ⅱ for Instance
5
作者 李姝颖 《海外英语》 2017年第4期221-222,共2页
The unceasing revolution of the global economy and culture boosts the revolutionary step of the educational circle.Combining the creed of The Guide of College English Teaching in 2016 with the results of investigation... The unceasing revolution of the global economy and culture boosts the revolutionary step of the educational circle.Combining the creed of The Guide of College English Teaching in 2016 with the results of investigation and survey in colleges, a research group in the Institute of Foreign Languages of Hankou University comes up with a revolutionary trial scheme on College English teaching conducted by discovery learning theory, as well as a research method of action research, which is in hope of mending the problems and shortcomings of current College English teaching. 展开更多
关键词 college English discovery learning theory action research teaching revolution
下载PDF
An evolutionary game theory-based machine learning framework for predicting mandatory lane change decision
6
作者 Sixuan Xu Mengyun Li +2 位作者 Wei Zhou Jiyang Zhang Chen Wang 《Digital Transportation and Safety》 2024年第3期115-125,共11页
Mandatory lane change(MLC)is likely to cause traffic oscillations,which have a negative impact on traffic efficiency and safety.There is a rapid increase in research on mandatory lane change decision(MLCD)prediction,w... Mandatory lane change(MLC)is likely to cause traffic oscillations,which have a negative impact on traffic efficiency and safety.There is a rapid increase in research on mandatory lane change decision(MLCD)prediction,which can be categorized into physics-based models and machine-learning models.Both types of models have their advantages and disadvantages.To obtain a more advanced MLCD prediction method,this study proposes a hybrid architecture,which combines the Evolutionary Game Theory(EGT)based model(considering data efficient and interpretable)and the Machine Learning(ML)based model(considering high prediction accuracy)to model the mandatory lane change decision of multi-style drivers(i.e.EGTML framework).Therefore,EGT is utilized to introduce physical information,which can describe the progressive cooperative interactions between drivers and predict the decision-making of multi-style drivers.The generalization of the EGTML method is further validated using four machine learning models:ANN,RF,LightGBM,and XGBoost.The superiority of EGTML is demonstrated using real-world data(i.e.,Next Generation SIMulation,NGSIM).The results of sensitivity analysis show that the EGTML model outperforms the general ML model,especially when the data is sparse. 展开更多
关键词 Mandatory lane change Evolutionary game theory Physics-informed machine learning
下载PDF
Project-based Language Learning: an Activity Theory Analysis in SOE Language Learning
7
作者 陈苡晴 《海外英语》 2016年第10期215-217,220,共4页
This study focuses on the effectiveness of the project-based language learning(PBLL) in a college Secretarial Oral English(SOE) Module. Student reflections of the language project work have been analyzed through Activ... This study focuses on the effectiveness of the project-based language learning(PBLL) in a college Secretarial Oral English(SOE) Module. Student reflections of the language project work have been analyzed through Activity Theory. Moreover,Data has been collected and categorized based on the components of complex human activity: the subject, object, tools(signs,symbols, and language), the community in which the activity take place, division of labor, and rules. The findings theoretically support the outcome of project-based language learning which align with the object of the activity. 展开更多
关键词 ACTIVITY theory PROJECT-BASED learning SOE LANGUAGE learning
下载PDF
Applying Learning Community Theory to Oral English Teaching in Sport Institutes
8
作者 杭花平 《海外英语》 2017年第19期236-237,共2页
Since traditional English teaching method, which merely focuses on language teaching but ignores communicative competence, severely impedes the development of students' oral ability. It is high time that English t... Since traditional English teaching method, which merely focuses on language teaching but ignores communicative competence, severely impedes the development of students' oral ability. It is high time that English teachers took measures to find a workable and valuable teaching method which can improve students' speaking proficiency effectively. Learning community theory provides a broad space for this, for it regards learning as a process which takes place in a community where the learners are sharing their experience towards knowledge building in an interactive and cooperative way. 展开更多
关键词 learning community theory oral English teaching sport institutes
下载PDF
The Application of Constructivism Theory to the Student-determined College English Learning 被引量:3
9
作者 罗丹丹 《Sino-US English Teaching》 2006年第6期33-35,共3页
According to the further exploration into constructivism theory, the author illustrates the application of this theory to China's college English teaching, especially in the new perspective of student-determined lear... According to the further exploration into constructivism theory, the author illustrates the application of this theory to China's college English teaching, especially in the new perspective of student-determined learning. 展开更多
关键词 constructivism theory student-determined learning INSTRUCTION
下载PDF
Hybrid data-driven framework for shale gas production performance analysis via game theory, machine learning, and optimization approaches 被引量:2
10
作者 Jin Meng Yu-Jie Zhou +4 位作者 Tian-Rui Ye Yi-Tian Xiao Ya-Qiu Lu Ai-Wei Zheng Bang Liang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期277-294,共18页
A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis ca... A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis can be challenging because production performance is dominated by the complex interaction among a series of geological and engineering factors.In fact,each factor can be viewed as a player who makes cooperative contributions to the production payoff within the constraints of physical laws and models.Inspired by the idea,we propose a hybrid data-driven analysis framework in this study,where the contributions of dominant factors are quantitatively evaluated,the productions are precisely forecasted,and the development optimization suggestions are comprehensively generated.More specifically,game theory and machine learning models are coupled to determine the dominating geological and engineering factors.The Shapley value with definite physical meaning is employed to quantitatively measure the effects of individual factors.A multi-model-fused stacked model is trained for production forecast,which provides the basis for derivative-free optimization algorithms to optimize the development plan.The complete workflow is validated with actual production data collected from the Fuling shale gas field,Sichuan Basin,China.The validation results show that the proposed procedure can draw rigorous conclusions with quantified evidence and thereby provide specific and reliable suggestions for development plan optimization.Comparing with traditional and experience-based approaches,the hybrid data-driven procedure is advanced in terms of both efficiency and accuracy. 展开更多
关键词 Shale gas Production performance DATA-DRIVEN Dominant factors Game theory Machine learning Derivative-free optimization
下载PDF
Anderson's Cognitive Theory and Learning Strategy Studies in Second Language Acquisition 被引量:9
11
作者 Lu Wenpeng (Foreign Languages department, Northwest Normal University, Lanzhou, 730070, China) 《兰州大学学报(社会科学版)》 CSSCI 北大核心 2000年第S1期228-231,共4页
Second language acquisition can not be understood without addressing the interaction between language and cognition. Cognitive theory can extend to describe learning strategies as complex cognitive skills. Theoretical... Second language acquisition can not be understood without addressing the interaction between language and cognition. Cognitive theory can extend to describe learning strategies as complex cognitive skills. Theoretical developments in Anderson’s production systems cover a broader range of behavior than other theories, including comprehension and production of oral and written texts as well as comprehension, problem solving, and verbal learning.Thus Anderson’s cognitive theory can be served as a rationale for learning strategy studies in second language acquisition. 展开更多
关键词 Anderson’s cognitive theory Anderson’s production systems learning strategy studies second language acquisition
下载PDF
Bandura’s Social Learning Theory and Its Importance in the Organizational Psychology Context 被引量:1
12
作者 Virginia Koutroubas Michael Galanakis 《Psychology Research》 2022年第6期315-322,共8页
This systematic review is focused on the importance of the Bandura Social Cognitive Theory and its theoretical components such as self-efficacy in workplace of today.The themes have been described through the course o... This systematic review is focused on the importance of the Bandura Social Cognitive Theory and its theoretical components such as self-efficacy in workplace of today.The themes have been described through the course of the decades.These theories have been utilized heavily in research and real-life case studies,have been further developed by Bandura and other researchers,and have been implemented in organizational psychology.During the past 10 years they have helped in reshaping Human Resources Development.Major latest contributions and applications are discussed touching even the recent outbreak of the pandemic.The influence of the theory is immense and the importance of self-efficacy in the workplace has been addressed and proven by research. 展开更多
关键词 Social Cognitive theory SELF-EFFICACY WORKPLACE managerial self-efficacy leadership-motivation-performance learning in the workplace
下载PDF
Educational Practices in the Model of Music Learning Theory of E. Edwin Gordon: An Observational Research 被引量:1
13
作者 Antonella Nuzzaci 《Journal of Literature and Art Studies》 2013年第5期263-277,共15页
This paper analyzes the supervision activity, to which educators and teachers enrolled with AIGAM (Gordon Italian Association for the Musical Learning) are subject to every year and intends to verify the application... This paper analyzes the supervision activity, to which educators and teachers enrolled with AIGAM (Gordon Italian Association for the Musical Learning) are subject to every year and intends to verify the application of those principles expressed in the learning model of the MLT (Music Learning Theory) developed by educational psychologist E. Edwin Gordon (1989, 1999, 2000, 2001, 2007) and promoted internationally by various institutions and organizations specifically accredited. It describes the influence of the videotaped supervision on the process, functions of monitoring, and evaluation of educational practices, starting with an empirical model that has guided the interventions in a study of supervision on training aimed at consolidating and developing professional skills in music education in early childhood. This paper sought to understand: the kind of practices, interactions, communications developing during an educational actions, the existence of a consistent relationship between the principles expressed in the MLT and their application, the type and benefits of supervision performed by of video recording on stakeholders in terms of change in professional behavior, and finally whether the active supervision could be comparable with other kinds of approaches. 展开更多
关键词 music education MLT (Music learning theory empirical research in music education observational tool
下载PDF
A density-functional-theory-based and machine-learning-accelerated hybrid method for intricate system catalysis 被引量:2
14
作者 Xuhao Wan Zhaofu Zhang +1 位作者 Wei Yu Yuzheng Guo 《Materials Reports(Energy)》 2021年第3期81-90,共10页
Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional de... Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional density functional theory(DFT)method,showing a particular advantage for the simulation of intricate system catalysis.Starting with a basic description of the whole workflow of the novel DFT-based and ML-accelerated(DFT-ML)scheme,and the common algorithms useable for machine learning,we presented in this paper our work on the development and performance test of a DFT-based ML method for catalysis program(DMCP)to implement the DFT-ML scheme.DMCP is an efficient and user-friendly program with the flexibility to accommodate the needs of performing ML calculations based on the data generated by DFT calculations or from materials database.We also employed an example of transition metal phthalocyanine double-atom catalysts as electrocatalysts for carbon reduction reaction to exhibit the general workflow of the DFT-ML hybrid scheme and our DMCP program. 展开更多
关键词 DMCP program Machine learning Density functional theory DFT-ML hybrid Scheme CATALYSIS Double-atom catalysts
下载PDF
A Preliminary Study on Connectivism—Constructivism Learning Theory Based on Developmental Cognitive Neuroscience and Spiking Neural Network 被引量:1
15
作者 Xin Liu Huailong Li 《Open Journal of Applied Sciences》 2021年第8期874-884,共11页
Based on a new theoretical perspective, this paper attempts to unify the seemingly incompatible learning theories of Connectivism and Constructivism into a scientific theoretical framework. The Connectivism-Constructi... Based on a new theoretical perspective, this paper attempts to unify the seemingly incompatible learning theories of Connectivism and Constructivism into a scientific theoretical framework. The Connectivism-Constructivism learning theory is not a simple superposition of the two theories. Instead, it absorbs the essence of the learning theory of Constructivism, Connectivism and Neo-Constructivism, and takes the two empirical scientific experimental results of developmental cognitive neuroscience and spiking neural network as the factual basis, and develops two theories from the perspective of development. Integration, to achieve the resolution of contradictions, complement each other, and then rebuild. This paper discusses Con<span "="">nectivism-Constructivism learning theory. The theory holds that the essence of knowledge is the connecti<span style="letter-spacing:-0.05pt;">on between the subject and the environment. There are two form</span>s: physical form and logical form. </span><span "="">The </span><span "="">only logical form can be realized and utilized by people. Learning can be divided into two stages: connection and construction. Connection is the premise, construction is the core, and the network action generated in the connection stage as a raw material is pruned, and processed by various systems in the construction stage to become psychological representation. When the psychological representation is used, the relevant network shaping is finished, and the meaningful network is formed, which completes the change of knowledge from physical form to logical form and from logical form to physical form. Therefore, learning is the process of constructing meaningful network. We should not only promote the students’ connection stage, but also help the students’ construction stage. The innovation and breakthrough contribution of this paper is that it is the first time to look at the topic of learning theory from a new research perspective. In order t<span style="letter-spacing:-0.05pt;">o explore a more convincing learning theoretical framework, this artic</span>le takes the lead in seeking theoretical support and factual basis from developmental cognitive neuroscience and Spiking neural network. As a result, Connectivism learning theory and Constructivism learning theory are successfully integrated into a rather complete and effective theoretical framework to reconstruct Connectivism-Constructivism learning theory. 展开更多
关键词 CONNECTIVISM CONSTRUCTIVISM learning theory DEVELOPMENT Neural Network
下载PDF
A survey of multi-modal learning theory
16
作者 HUANG Yu HUANG Longbo 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2023年第5期38-49,共12页
Deep multi-modal learning,a rapidly growing field with a wide range of practical applications,aims to effectively utilize and integrate information from multiple sources,known as modalities.Despite its impressive empi... Deep multi-modal learning,a rapidly growing field with a wide range of practical applications,aims to effectively utilize and integrate information from multiple sources,known as modalities.Despite its impressive empirical performance,the theoretical foundations of deep multi-modal learning have yet to be fully explored.In this paper,we will undertake a comprehensive survey of recent developments in multi-modal learning theories,focusing on the fundamental properties that govern this field.Our goal is to provide a thorough collection of current theoretical tools for analyzing multi-modal learning,to clarify their implications for practitioners,and to suggest future directions for the establishment of a solid theoretical foundation for deep multi-modal learning. 展开更多
关键词 multi-modal learning machine learning theory OPTIMIZATION GENERALIZATION
下载PDF
Recognition and interfere deceptive behavior based on inverse reinforcement learning and game theory
17
作者 ZENG Yunxiu XU Kai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期270-288,共19页
In real-time strategy(RTS)games,the ability of recognizing other players’goals is important for creating artifical intelligence(AI)players.However,most current goal recognition methods do not take the player’s decep... In real-time strategy(RTS)games,the ability of recognizing other players’goals is important for creating artifical intelligence(AI)players.However,most current goal recognition methods do not take the player’s deceptive behavior into account which often occurs in RTS game scenarios,resulting in poor recognition results.In order to solve this problem,this paper proposes goal recognition for deceptive agent,which is an extended goal recognition method applying the deductive reason method(from general to special)to model the deceptive agent’s behavioral strategy.First of all,the general deceptive behavior model is proposed to abstract features of deception,and then these features are applied to construct a behavior strategy that best matches the deceiver’s historical behavior data by the inverse reinforcement learning(IRL)method.Final,to interfere with the deceptive behavior implementation,we construct a game model to describe the confrontation scenario and the most effective interference measures. 展开更多
关键词 deceptive path planning inverse reinforcement learning(IRL) game theory goal recognition
下载PDF
A Graph Theory Based Self-Learning Honeypot to Detect Persistent Threats
18
作者 R.T.Pavendan K.Sankar K.A.Varun Kumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3331-3348,共18页
Attacks on the cyber space is getting exponential in recent times.Illegal penetrations and breaches are real threats to the individuals and organizations.Conventional security systems are good enough to detect the kno... Attacks on the cyber space is getting exponential in recent times.Illegal penetrations and breaches are real threats to the individuals and organizations.Conventional security systems are good enough to detect the known threats but when it comes to Advanced Persistent Threats(APTs)they fails.These APTs are targeted,more sophisticated and very persistent and incorporates lot of evasive techniques to bypass the existing defenses.Hence,there is a need for an effective defense system that can achieve a complete reliance of security.To address the above-mentioned issues,this paper proposes a novel honeypot system that tracks the anonymous behavior of the APT threats.The key idea of honeypot leverages the concepts of graph theory to detect such targeted attacks.The proposed honey-pot is self-realizing,strategic assisted which withholds the APTs actionable tech-niques and observes the behavior for analysis and modelling.The proposed graph theory based self learning honeypot using the resultsγ(C(n,1)),γc(C(n,1)),γsc(C(n,1))outperforms traditional techniques by detecting APTs behavioral with detection rate of 96%. 展开更多
关键词 Graph theory DOMINATION Connected Domination Secure Connected Domination HONEYPOT self learning ransomware
下载PDF
Preana: Game Theory Based Prediction with Reinforcement Learning
19
作者 Zahra Eftekhari Shahram Rahimi 《Natural Science》 2014年第13期1108-1121,共14页
In this article, we have developed a game theory based prediction tool, named Preana, based on a promising model developed by Professor Bruce Beuno de Mesquita. The first part of this work is dedicated to exploration ... In this article, we have developed a game theory based prediction tool, named Preana, based on a promising model developed by Professor Bruce Beuno de Mesquita. The first part of this work is dedicated to exploration of the specifics of Mesquita’s algorithm and reproduction of the factors and features that have not been revealed in literature. In addition, we have developed a learning mechanism to model the players’ reasoning ability when it comes to taking risks. Preana can predict the outcome of any issue with multiple steak-holders who have conflicting interests in economic, business, and political sciences. We have utilized game theory, expected utility theory, Median voter theory, probability distribution and reinforcement learning. We were able to reproduce Mesquita’s reported results and have included two case studies from his publications and compared his results to that of Preana. We have also applied Preana on Irans 2013 presidential election to verify the accuracy of the prediction made by Preana. 展开更多
关键词 GAME theory PREDICTIVE ANALYTICS REINFORCEMENT learning
下载PDF
Solutions to Rural College Students' Psychological Plight in Career Choice Based on Social Learning Theory:A Case Study of Northwest A&F University
20
作者 Jie LI 《Asian Agricultural Research》 2017年第8期101-102,共2页
The rural college students are facing psychological plight in their career choice.The social learning theory can use the triadic theory of learning to set reasonable career choice goals,the observational learning theo... The rural college students are facing psychological plight in their career choice.The social learning theory can use the triadic theory of learning to set reasonable career choice goals,the observational learning theory can be employed to establish a correct outlook on career choice,and the self-efficacy theory can be adopted to make up for the deficiencies in career choice. 展开更多
关键词 Rural college students Psychological plight in career choice Social learning theory
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部