The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of lin...The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. A numerical example is given to show the effectiveness and the benefits of the proposed method.展开更多
A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distri...A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.展开更多
The dynamic behavior of discrete-time cellular neural networks(DTCNN), which is strict with zero threshold value, is mainly studied in asynchronous mode and in synchronous mode. In general, a k-attractor of DTCNN is n...The dynamic behavior of discrete-time cellular neural networks(DTCNN), which is strict with zero threshold value, is mainly studied in asynchronous mode and in synchronous mode. In general, a k-attractor of DTCNN is not a convergent point. But in this paper, it is proved that a k-attractor is a convergent point if the strict DTCNN satisfies some conditions. The attraction basin of the strict DTCNN is studied, one example is given to illustrate the previous conclusions to be wrong, and several results are presented. The obtained results on k-attractor and attraction basin not only correct the previous results, but also provide a theoretical foundation of performance analysis and new applications of the DTCNN.展开更多
We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-tim...We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stabilit...The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found. The result obtained holds not only for constant delay but also for time-varying delays.展开更多
This paper addresses the problem of robust stability for a class of discrete-time neural networks with time-varying delay and parameter uncertainties.By constructing a new augmented Lyapunov-Krasovskii function,some n...This paper addresses the problem of robust stability for a class of discrete-time neural networks with time-varying delay and parameter uncertainties.By constructing a new augmented Lyapunov-Krasovskii function,some new improved stability criteria are obtained in forms of linear matrix inequality(LMI) technique.Compared with some recent results in the literature,the conservatism of these new criteria is reduced notably.Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.展开更多
In this paper, a new sufficient condition for the global exponential stability of a unique equilibrium point of discrete-time cellular neural networks is given. It is shown that the condition relies on the feedback ma...In this paper, a new sufficient condition for the global exponential stability of a unique equilibrium point of discrete-time cellular neural networks is given. It is shown that the condition relies on the feedback matrices and is independent of the delay parameter. Furthermore, this condition is less restrictive than those given in the literature.展开更多
In this paper, we first introduce the model of discrete-time neural networkswith generalized input--output function and present a proof of the existence of afixed point by Schauder fixed-point principle. Secondly, we ...In this paper, we first introduce the model of discrete-time neural networkswith generalized input--output function and present a proof of the existence of afixed point by Schauder fixed-point principle. Secondly, we study the uniformlyasymptotical stability of equilibrium in non-autonomous discrete--time neuralnetworks and give some sufficient conditions that guarantee the stability of itby using the converse theorem of Lyapunov function. Finally, several examplesand numerical simulations are given to illustrate and reinforce our theories.展开更多
A novel neural network model, termed the discrete-time delayed standard neural network model (DDSNNM), and similar to the nominal model in linear robust control theory, is suggested to facilitate the stability analy...A novel neural network model, termed the discrete-time delayed standard neural network model (DDSNNM), and similar to the nominal model in linear robust control theory, is suggested to facilitate the stability analysis of discrete-time recurrent neural networks (RNNs) and to ease the synthesis of controllers for discrete-time nonlinear systems. The model is composed of a discrete-time linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. By combining various Lyapunov functionals with the S-procedure, sufficient conditions for the global asymptotic stability and global exponential stability of the DDSNNM are derived, which are formulated as linear or nonlinear matrix inequalities. Most discrete-time delayed or non-delayed RNNs, or discrete-time neural-network-based nonlinear control systems can be transformed into the DDSNNMs for stability analysis and controller synthesis in a unified way. Two application examples are given where the DDSNNMs are employed to analyze the stability of the discrete-time cellular neural networks (CNNs) and to synthesize the neuro-controllers for the discrete-time nonlinear systems, respectively. Through these examples, it is demonstrated that the DDSNNM not only makes the stability analysis of the RNNs much easier, but also provides a new approach to the synthesis of the controllers for the nonlinear systems.展开更多
Discrete-time version of the bi-directional Cohen-Grossberg neural network is stud-ied in this paper. Some sufficient conditions are obtained to ensure the global exponen-tial stability of such networks with discrete ...Discrete-time version of the bi-directional Cohen-Grossberg neural network is stud-ied in this paper. Some sufficient conditions are obtained to ensure the global exponen-tial stability of such networks with discrete time based on Lyapunov method. These results do not require the symmetry of the connection matrix and the monotonicity, boundedness and differentiability of the activation function.展开更多
A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuz...A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.展开更多
Recently, an approach for the rapid detection of small oscillation faults based on deterministic learning theory was proposed for continuous-time systems. In this paper, a fault detection scheme is proposed for a clas...Recently, an approach for the rapid detection of small oscillation faults based on deterministic learning theory was proposed for continuous-time systems. In this paper, a fault detection scheme is proposed for a class of nonlinear discrete-time systems via deterministic learning. By using a discrete-time extension of deterministic learning algorithm, the general fault functions (i.e., the internal dynamics) underlying normal and fault modes of nonlinear discrete-time systems are locally-accurately approximated by discrete-time dynamical radial basis function (RBF) networks. Then, a bank of estimators with the obtained knowledge of system dynamics embedded is constructed, and a set of residuals are obtained and used to measure the differences between the dynamics of the monitored system and the dynamics of the trained systems. A fault detection decision scheme is presented according to the smallest residual principle, i.e., the occurrence of a fault can be detected in a discrete-time setting by comparing the magnitude of residuals. The fault detectability analysis is carried out and the upper bound of detection time is derived. A simulation example is given to illustrate the effectiveness of the proposed scheme.展开更多
基金Projects(60874030,60835001,60574006)supported by the National Natural Science Foundation of ChinaProjects(07KJB510125,08KJD510008)supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of ChinaProject supported by the Qing Lan Program,Jiangsu Province,China
文摘The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. A numerical example is given to show the effectiveness and the benefits of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60874113)
文摘A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.
文摘The dynamic behavior of discrete-time cellular neural networks(DTCNN), which is strict with zero threshold value, is mainly studied in asynchronous mode and in synchronous mode. In general, a k-attractor of DTCNN is not a convergent point. But in this paper, it is proved that a k-attractor is a convergent point if the strict DTCNN satisfies some conditions. The attraction basin of the strict DTCNN is studied, one example is given to illustrate the previous conclusions to be wrong, and several results are presented. The obtained results on k-attractor and attraction basin not only correct the previous results, but also provide a theoretical foundation of performance analysis and new applications of the DTCNN.
基金This project was supported by the National Natural Science Foundation of China (60074008) .
文摘We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
基金Project supported by the Program for New Century Excellent Talents in University (Grant No NCET-06-0298)the Program for Liaoning Excellent Talents in University (Grant No RC-05-07)+1 种基金the Program for Study of Science of the Educational Department of Liaoning Province, China (Grant No 05L020)the Program for Dalian Science and Technology of China (Grant No2005A10GX106)
文摘The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found. The result obtained holds not only for constant delay but also for time-varying delays.
基金Supported by the Science and Technology Founation of Guizhou Province (Grant No.[2010]2139)the Program for New Century Excellent Talents in University (Grant No.NCET-06-0811)
文摘This paper addresses the problem of robust stability for a class of discrete-time neural networks with time-varying delay and parameter uncertainties.By constructing a new augmented Lyapunov-Krasovskii function,some new improved stability criteria are obtained in forms of linear matrix inequality(LMI) technique.Compared with some recent results in the literature,the conservatism of these new criteria is reduced notably.Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
基金The work is supported by Scientific Research Fund of Hunan Provincial Education Department (03C248).
文摘In this paper, a new sufficient condition for the global exponential stability of a unique equilibrium point of discrete-time cellular neural networks is given. It is shown that the condition relies on the feedback matrices and is independent of the delay parameter. Furthermore, this condition is less restrictive than those given in the literature.
基金This paper is supportea by National Natural Science Foundation of China
文摘In this paper, we first introduce the model of discrete-time neural networkswith generalized input--output function and present a proof of the existence of afixed point by Schauder fixed-point principle. Secondly, we study the uniformlyasymptotical stability of equilibrium in non-autonomous discrete--time neuralnetworks and give some sufficient conditions that guarantee the stability of itby using the converse theorem of Lyapunov function. Finally, several examplesand numerical simulations are given to illustrate and reinforce our theories.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 60504024) the Research Project of Zhejiang Provincial Education Department (Grant No. 20050905).
文摘A novel neural network model, termed the discrete-time delayed standard neural network model (DDSNNM), and similar to the nominal model in linear robust control theory, is suggested to facilitate the stability analysis of discrete-time recurrent neural networks (RNNs) and to ease the synthesis of controllers for discrete-time nonlinear systems. The model is composed of a discrete-time linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. By combining various Lyapunov functionals with the S-procedure, sufficient conditions for the global asymptotic stability and global exponential stability of the DDSNNM are derived, which are formulated as linear or nonlinear matrix inequalities. Most discrete-time delayed or non-delayed RNNs, or discrete-time neural-network-based nonlinear control systems can be transformed into the DDSNNMs for stability analysis and controller synthesis in a unified way. Two application examples are given where the DDSNNMs are employed to analyze the stability of the discrete-time cellular neural networks (CNNs) and to synthesize the neuro-controllers for the discrete-time nonlinear systems, respectively. Through these examples, it is demonstrated that the DDSNNM not only makes the stability analysis of the RNNs much easier, but also provides a new approach to the synthesis of the controllers for the nonlinear systems.
基金supported by Scientific Research Foundation of Hunan Provincial EducationDepartment (04A055, 05A057,03C009)
文摘Discrete-time version of the bi-directional Cohen-Grossberg neural network is stud-ied in this paper. Some sufficient conditions are obtained to ensure the global exponen-tial stability of such networks with discrete time based on Lyapunov method. These results do not require the symmetry of the connection matrix and the monotonicity, boundedness and differentiability of the activation function.
基金the National Natural Science Foundation of China (Grant No. 60504024)the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y106010)the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP), China (Grant No. 20060335022)
文摘A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.
基金This work was supported by the National Science Fund for Distinguished Young Scholars (No. 61225014), the National Major Scientific Instruments Development Project (No. 61527811), the National Natural Science Foundation of China (Nos. 61304084, 61374119), the Guangdong Natural Science Foundation (No. 2014A030312005), and the Space Intelligent Control Key Laboratory of Science and Technology for National Defense.
文摘Recently, an approach for the rapid detection of small oscillation faults based on deterministic learning theory was proposed for continuous-time systems. In this paper, a fault detection scheme is proposed for a class of nonlinear discrete-time systems via deterministic learning. By using a discrete-time extension of deterministic learning algorithm, the general fault functions (i.e., the internal dynamics) underlying normal and fault modes of nonlinear discrete-time systems are locally-accurately approximated by discrete-time dynamical radial basis function (RBF) networks. Then, a bank of estimators with the obtained knowledge of system dynamics embedded is constructed, and a set of residuals are obtained and used to measure the differences between the dynamics of the monitored system and the dynamics of the trained systems. A fault detection decision scheme is presented according to the smallest residual principle, i.e., the occurrence of a fault can be detected in a discrete-time setting by comparing the magnitude of residuals. The fault detectability analysis is carried out and the upper bound of detection time is derived. A simulation example is given to illustrate the effectiveness of the proposed scheme.