In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows...In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows that homotopy analysis method is effective and validity in solving hybrid nonlinear problems, including solitary solution of difference-differential equation.展开更多
Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the co...Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.展开更多
In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic co...In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.展开更多
We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on t...We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.展开更多
基金the State Key Basic Research Program of China under Grant No.2004CB318000
文摘In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows that homotopy analysis method is effective and validity in solving hybrid nonlinear problems, including solitary solution of difference-differential equation.
基金Project supported by the National Natural Science Foundation of China (Grant No.12071042)Beijing Natural Science Foundation (Grant No.1202006)。
文摘Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.
基金the National Key Basic Research Project of China under
文摘In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.
文摘We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.