In order to increase the fault diagnosis efficiency and make the fault data mining be realized, the decision table containing numerical attributes must be discretized for further calculations. The discernibility matri...In order to increase the fault diagnosis efficiency and make the fault data mining be realized, the decision table containing numerical attributes must be discretized for further calculations. The discernibility matrix-based reduction method depends on whether the numerical attributes can be properly discretized or not.So a discretization algorithm based on particle swarm optimization(PSO) is proposed. Moreover, hybrid weights are adopted in the process of particles evolution. Comparative calculations for certain equipment are completed to demonstrate the effectiveness of the proposed algorithm. The results indicate that the proposed algorithm has better performance than other popular algorithms such as class-attribute interdependence maximization(CAIM)discretization method and entropy-based discretization method.展开更多
基金the National Natural Science Foundation of China(No.51775090)the General Program of Civil Aviation Flight University of China(No.J2015-39)
文摘In order to increase the fault diagnosis efficiency and make the fault data mining be realized, the decision table containing numerical attributes must be discretized for further calculations. The discernibility matrix-based reduction method depends on whether the numerical attributes can be properly discretized or not.So a discretization algorithm based on particle swarm optimization(PSO) is proposed. Moreover, hybrid weights are adopted in the process of particles evolution. Comparative calculations for certain equipment are completed to demonstrate the effectiveness of the proposed algorithm. The results indicate that the proposed algorithm has better performance than other popular algorithms such as class-attribute interdependence maximization(CAIM)discretization method and entropy-based discretization method.