Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was ad...Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was adopted to explore the bulking coefficient time effect of the broken rock in the caving zone under three-dimensional triaxial compression condition.The phenomena of stress corrosion,deformation,and failure of rock blocks were simulated in the numerical model.Meanwhile,a new criterion of rock fragments damage was put forward.It was found that the broken rock has obvious viscoelastic properties.A new equation based on the Burgers creep model was proposed to predict the bulking coefficient of broken rock.A deformation characteristic parameter of the prediction equation was analyzed,which can be set as a fixed value in the mid-and long-term prediction of the bulking coefficient.There are quadratic function relationships between the deformation characteristic parameter value and Talbot gradation index,axial pressure and confining pressure.展开更多
It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponent...It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models.This type of problem in the framework of general discrete exponential family nonlinear models is discussed.Two types of varying dispersion,which are random coefficients model and random effects model,are proposed,and corresponding score test statistics are constructed and expressed in simple,easy to use,matrix formulas.展开更多
The aim of this study is to compare the Discrete wavelet decomposition and the modified Principal Analysis Component (PCA) decomposition to analyze the stabilogram for the purpose to provide a new insight about human ...The aim of this study is to compare the Discrete wavelet decomposition and the modified Principal Analysis Component (PCA) decomposition to analyze the stabilogram for the purpose to provide a new insight about human postural stability. Discrete wavelet analysis is used to decompose the stabilogram into several timescale components (i.e. detail wavelet coefficients and approximation wavelet coefficients). Whereas, the modified PCA decomposition is applied to decompose the stabilogram into three components, namely: trend, rambling and trembling. Based on the modified PCA analysis, the trace of analytic trembling and rambling in the complex plan highlights a unique rotation center. The same property is found when considering the detail wavelet coefficients. Based on this property, the area of the circle in which 95% of the trace’s data points are located, is extracted to provide important information about the postural equilibrium status of healthy subjects (average age 31 ± 11 years). Based on experimental results, this parameter seems to be a valuable parameter in order to highlight the effect of visual entries, stabilogram direction, gender and age on the postural stability. Obtained results show also that wavelets and the modified PCA decomposition can discriminate the subjects by gender which is particularly interesting in biometric applications and human stability simulation. Moreover, both techniques highlight the fact that male are less stable than female and the fact that there is no correlation between human stability and his age (under 60).展开更多
Essential proteins play a vital role in biological processes,and the combination of gene expression profiles with Protein-Protein Interaction(PPI)networks can improve the identification of essential proteins.However,g...Essential proteins play a vital role in biological processes,and the combination of gene expression profiles with Protein-Protein Interaction(PPI)networks can improve the identification of essential proteins.However,gene expression data are prone to significant fluctuations due to noise interference in topological networks.In this work,we discretized gene expression data and used the discrete similarities of the gene expression spectrum to eliminate noise fluctuation.We then proposed the Pearson Jaccard coefficient(PJC)that consisted of continuous and discrete similarities in the gene expression data.Using the graph theory as the basis,we fused the newly proposed similarity coefficient with the existing network topology prediction algorithm at each protein node to recognize essential proteins.This strategy exhibited a high recognition rate and good specificity.We validated the new similarity coefficient PJC on PPI datasets of Krogan,Gavin,and DIP of yeast species and evaluated the results by receiver operating characteristic analysis,jackknife analysis,top analysis,and accuracy analysis.Compared with that of node-based network topology centrality and fusion biological information centrality methods,the new similarity coefficient PJC showed a significantly improved prediction performance for essential proteins in DC,IC,Eigenvector centrality,subgraph centrality,betweenness centrality,closeness centrality,NC,PeC,and WDC.We also compared the PJC coefficient with other methods using the NF-PIN algorithm,which predicts proteins by constructing active PPI networks through dynamic gene expression.The experimental results proved that our newly proposed similarity coefficient PJC has superior advantages in predicting essential proteins.展开更多
In this paper, a singularly perturbed Robin type boundary value problem for second-order ordinary differential equation with discontinuous convection coefficient and source term is considered. A robust-layer-resolving...In this paper, a singularly perturbed Robin type boundary value problem for second-order ordinary differential equation with discontinuous convection coefficient and source term is considered. A robust-layer-resolving numerical method is proposed. An e-uniform global error estimate for the numerical solution and also to the numerical derivative are established. Numerical results are presented, which are in agreement with the theoretical predictions.展开更多
Generalized algorithms for solving problems of discrete, integer, and Boolean programming are discussed. These algorithms are associated with the method of normalized functions and are based on a combination of formal...Generalized algorithms for solving problems of discrete, integer, and Boolean programming are discussed. These algorithms are associated with the method of normalized functions and are based on a combination of formal and heuristic procedures. This allows one to obtain quasi-optimal solutions after a small number of steps, overcoming the NP-completeness of discrete optimization problems. Questions of constructing so-called “duplicate” algorithms are considered to improve the quality of discrete problem solutions. An approach to solving discrete problems with fuzzy coefficients in objective functions and constraints on the basis of modifying the generalized algorithms is considered. Questions of applying the generalized algorithms to solve multicriteria discrete problems are also discussed. The results of the paper are of a universal character and can be applied to the design, planning, operation, and control of systems and processes of different purposes. The results of the paper are already being used to solve power engineering problems.展开更多
基金This work was supported by the National Natural Science Foundation of China,NSFC(Nos.U1803118 and 51974296)and the China Scholarship Council(CSC)(award to Fanfei Meng for PhD period at Kyushu University).
文摘Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was adopted to explore the bulking coefficient time effect of the broken rock in the caving zone under three-dimensional triaxial compression condition.The phenomena of stress corrosion,deformation,and failure of rock blocks were simulated in the numerical model.Meanwhile,a new criterion of rock fragments damage was put forward.It was found that the broken rock has obvious viscoelastic properties.A new equation based on the Burgers creep model was proposed to predict the bulking coefficient of broken rock.A deformation characteristic parameter of the prediction equation was analyzed,which can be set as a fixed value in the mid-and long-term prediction of the bulking coefficient.There are quadratic function relationships between the deformation characteristic parameter value and Talbot gradation index,axial pressure and confining pressure.
基金Supported by the National Natural Science Foundations of China( 1 9631 0 4 0 ) and SSFC( o2 BTJ0 0 1 ) .
文摘It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models.This type of problem in the framework of general discrete exponential family nonlinear models is discussed.Two types of varying dispersion,which are random coefficients model and random effects model,are proposed,and corresponding score test statistics are constructed and expressed in simple,easy to use,matrix formulas.
文摘The aim of this study is to compare the Discrete wavelet decomposition and the modified Principal Analysis Component (PCA) decomposition to analyze the stabilogram for the purpose to provide a new insight about human postural stability. Discrete wavelet analysis is used to decompose the stabilogram into several timescale components (i.e. detail wavelet coefficients and approximation wavelet coefficients). Whereas, the modified PCA decomposition is applied to decompose the stabilogram into three components, namely: trend, rambling and trembling. Based on the modified PCA analysis, the trace of analytic trembling and rambling in the complex plan highlights a unique rotation center. The same property is found when considering the detail wavelet coefficients. Based on this property, the area of the circle in which 95% of the trace’s data points are located, is extracted to provide important information about the postural equilibrium status of healthy subjects (average age 31 ± 11 years). Based on experimental results, this parameter seems to be a valuable parameter in order to highlight the effect of visual entries, stabilogram direction, gender and age on the postural stability. Obtained results show also that wavelets and the modified PCA decomposition can discriminate the subjects by gender which is particularly interesting in biometric applications and human stability simulation. Moreover, both techniques highlight the fact that male are less stable than female and the fact that there is no correlation between human stability and his age (under 60).
基金supported by the Shenzhen KQTD Project(No.KQTD20200820113106007)China Scholarship Council(No.201906725017)+2 种基金the Collaborative Education Project of Industry-University cooperation of the Chinese Ministry of Education(No.201902098015)the Teaching Reform Project of Hunan Normal University(No.82)the National Undergraduate Training Program for Innovation(No.202110542004).
文摘Essential proteins play a vital role in biological processes,and the combination of gene expression profiles with Protein-Protein Interaction(PPI)networks can improve the identification of essential proteins.However,gene expression data are prone to significant fluctuations due to noise interference in topological networks.In this work,we discretized gene expression data and used the discrete similarities of the gene expression spectrum to eliminate noise fluctuation.We then proposed the Pearson Jaccard coefficient(PJC)that consisted of continuous and discrete similarities in the gene expression data.Using the graph theory as the basis,we fused the newly proposed similarity coefficient with the existing network topology prediction algorithm at each protein node to recognize essential proteins.This strategy exhibited a high recognition rate and good specificity.We validated the new similarity coefficient PJC on PPI datasets of Krogan,Gavin,and DIP of yeast species and evaluated the results by receiver operating characteristic analysis,jackknife analysis,top analysis,and accuracy analysis.Compared with that of node-based network topology centrality and fusion biological information centrality methods,the new similarity coefficient PJC showed a significantly improved prediction performance for essential proteins in DC,IC,Eigenvector centrality,subgraph centrality,betweenness centrality,closeness centrality,NC,PeC,and WDC.We also compared the PJC coefficient with other methods using the NF-PIN algorithm,which predicts proteins by constructing active PPI networks through dynamic gene expression.The experimental results proved that our newly proposed similarity coefficient PJC has superior advantages in predicting essential proteins.
基金the Council of Scientific and Industrial Research,New Delhi,India for its financial support.
文摘In this paper, a singularly perturbed Robin type boundary value problem for second-order ordinary differential equation with discontinuous convection coefficient and source term is considered. A robust-layer-resolving numerical method is proposed. An e-uniform global error estimate for the numerical solution and also to the numerical derivative are established. Numerical results are presented, which are in agreement with the theoretical predictions.
文摘Generalized algorithms for solving problems of discrete, integer, and Boolean programming are discussed. These algorithms are associated with the method of normalized functions and are based on a combination of formal and heuristic procedures. This allows one to obtain quasi-optimal solutions after a small number of steps, overcoming the NP-completeness of discrete optimization problems. Questions of constructing so-called “duplicate” algorithms are considered to improve the quality of discrete problem solutions. An approach to solving discrete problems with fuzzy coefficients in objective functions and constraints on the basis of modifying the generalized algorithms is considered. Questions of applying the generalized algorithms to solve multicriteria discrete problems are also discussed. The results of the paper are of a universal character and can be applied to the design, planning, operation, and control of systems and processes of different purposes. The results of the paper are already being used to solve power engineering problems.