期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy 被引量:4
1
作者 Zoushuang Li Junren Xiang +4 位作者 Xiao Liu Xiaobo Li Lijie Li Bin Shan Rong Chen 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第2期129-144,共16页
Surface modification for micro-nanoparticles at the atomic and close-to-atomic scales is of great importance to enhance their performance in various applications,including high-volume battery,persistent luminescence,e... Surface modification for micro-nanoparticles at the atomic and close-to-atomic scales is of great importance to enhance their performance in various applications,including high-volume battery,persistent luminescence,etc.Fluidized bed atomic layer deposition(FB-ALD)is a promising atomic-scale manufacturing technology that offers ultrathin films on large amounts of particulate materials.Nevertheless,nanoparticles tend to agglomerate due to the strong cohesive forces,which is much unfavorable to the film conformality and also hinders their real applications.In this paper,the particle fluidization process in an ultrasonic vibration-assisted FB-ALD reactor is numerically investigated from micro-scale to macro-scale through the multiscale computational fluid dynamics and discrete element method(CFD-DEM)modeling with experimental verification.Various vibration amplitudes and frequencies are investigated in terms of their effects on the fluid dynamics,distribution of particle velocity and solid volume fraction,as well as the size of agglomerates.Results show that the fluid turbulent kinetic energy,which is the key power source for the particles to obtain the kinetic energy for overcoming the interparticle agglomeration forces,can be strengthened obviously by the ultrasonic vibration.Besides,the application of ultrasonic vibration is found to reduce the mean agglomerate size in the FB.This is bound to facilitate the heat transfer and precursor diffusion in the entire FB-ALD reactor and the agglomerates,which can largely shorten the coating time and improve the film conformality as well as precursor utilization.The simulation results also agree well with our battery experimental results,verifying the validity of the multiscale CFD-DEM model.This work has provided momentous guidance to the mass manufacturing of atomic-scale particle coating from lab-scale to industrial applications. 展开更多
关键词 atomic scale manufacturing fluidized bed atomic layer deposition(FB-ALD) computational fluid dynamics and discrete element method(CFD-DEM) nanoparticle agglomerates ultrasonic vibration
下载PDF
Analysis of gas-solid flow and shaft-injected gas distribution in an oxygen blast furnace using a discrete element method and computational fluid dynamics coupled model 被引量:3
2
作者 Zeshang Dong Jingsong Wang +2 位作者 Haibin Zuo Xuefeng She Qingguo Xue 《Particuology》 SCIE EI CAS CSCD 2017年第3期63-72,共10页
lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b... lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center. 展开更多
关键词 Oxygen blast furnace discrete element method computational fluid dynamics Shaft gas injection Gas-solid flow Pressure field
原文传递
Parallel computing of discrete element method on multi-core processors 被引量:6
3
作者 Yusuke Shigeto Mikio Sakai 《Particuology》 SCIE EI CAS CSCD 2011年第4期398-405,共8页
This paper describes parallel simulation techniques for the discrete element method (DEM) on multi-core processors. Recently, multi-core CPU and GPU processors have attracted much attention in accelerating computer ... This paper describes parallel simulation techniques for the discrete element method (DEM) on multi-core processors. Recently, multi-core CPU and GPU processors have attracted much attention in accelerating computer simulations in various fields. We propose a new algorithm for multi-thread parallel computation of DEM, which makes effective use of the available memory and accelerates the computation. This study shows that memory usage is drastically reduced by using this algorithm. To show the practical use of DEM in industry, a large-scale powder system is simulated with a complicated drive unit. We compared the performance of the simulation between the latest GPU and CPU processors with optimized programs for each processor. The results show that the difference in performance is not substantial when using either GPUs or CPUs with a multi-thread parallel algorithm. In addition, DEM algorithm is shown to have high scalabilitv in a multi-thread parallel computation on a CPU. 展开更多
关键词 discrete element method Parallel computing Multi-core processor GPGPU
原文传递
Controllable Discrete Rogue Wave Solutions of the Ablowitz–Ladik Equation in Optics
4
作者 闻小永 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第7期29-34,共6页
With the aid of symbolic computation Maple, the discrete Ablowitz–Ladik equation is studied via an algebra method, some new rational solutions with four arbitrary parameters are constructed. By analyzing related para... With the aid of symbolic computation Maple, the discrete Ablowitz–Ladik equation is studied via an algebra method, some new rational solutions with four arbitrary parameters are constructed. By analyzing related parameters, the discrete rogue wave solutions with alterable positions and amplitude for the focusing Ablowitz–Ladik equations are derived. Some properties are discussed by graphical analysis, which might be helpful for understanding physical phenomena in optics. 展开更多
关键词 symbolic computation Maple Ablowitz–Ladik equation rational solutions discrete rogue wave solutions
原文传递
A hybrid DEM/CFD approach for solid-liquid flows 被引量:22
5
作者 邱流潮 WU Chuan-yu 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第1期19-25,共7页
A hybrid scheme coupling the discrete element method (DEM) with the computational fluid dynamics (CFD) is developed to model solid-liquid flows. Instead of solving the pressure Poisson equation, we use the compres... A hybrid scheme coupling the discrete element method (DEM) with the computational fluid dynamics (CFD) is developed to model solid-liquid flows. Instead of solving the pressure Poisson equation, we use the compressible volume-averaged continuity and momentum equations with an isothermal stiff equation of state for the liquid phase in our CFD scheme. The motion of the solid phase is obtained by using the DEM, in which the particle-particle and particle-wall interactions are modelled by using the theoretical contact mechanics. The two phases are coupled through the Newton's third law of motion. To verify the proposed method, the sedi-mentation of a single spherical particle is simulated in water, and the results are compared with experimental results reported in the literature. In addition, the drafting, kissing, and tumbling (DKT) phenomenon between two particles in a liquid is modelled and rea-sonable results are obtained. Finally, the numerical simulation of the density-driven segregation of a binary particulate suspension in-volving 10 000 particles in a closed container is conducted to show that the presented method is potentially powerful to simulate real particulate flows with large number of moving particles. 展开更多
关键词 discrete element method (DEM) computational fluid dynamics (CFD)
原文传递
Investigation into improving the efficiency and accuracy of CFD/DEM simulations 被引量:7
6
作者 Falah Alobaid Nabil Baraki Bernd Epple 《Particuology》 SCIE EI CAS CSCD 2014年第5期41-53,共13页
The Euler-Lagrange approach combined with a discrete element method has frequently been applied to elucidate the hydrodynamic behavior of dense fluid-solid flows in fluidized beds. In this work, the efficiency and acc... The Euler-Lagrange approach combined with a discrete element method has frequently been applied to elucidate the hydrodynamic behavior of dense fluid-solid flows in fluidized beds. In this work, the efficiency and accuracy of this model are investigated. Parameter studies are performed; in these studies, the stiffness coefficient, the fluid time step and the processor number are varied under conditions with different numbers of particles and different particle diameters. The obtained results are compared with measurements to derive the optimum parameters for CFD/DEM simulations. The results suggest that the application of higher stiffness coefficients slightly improves the simulation accuracy. However, the average computing time increases exponentially. At larger fluid time steps, the results show that the average computation time is independent of the applied fluid time step whereas the simulation accuracy decreases greatly with increasing the fluid time step. The use of smaller time steps leads to negligible improvements in the simulation accuracy but results in an exponential rise in the average computing time. The parallelization accelerates the DEM simulations if the critical number for the domain decomposition is not reached. Above this number, the performance is no longer proportional to the number of processors. The critical number for the domain decomposition depends on the number of particles. An increase in solid contents results in a shift of the critical decomposition number to higher numbers of CPUs. 展开更多
关键词 computational fluid dynamics discrete element method Stiffness coefficient Fluid time step Parallelization
原文传递
Investigation of particle-wall interaction in a pseudo-2D fluidized bed using CFD-DEM simulations 被引量:5
7
作者 Tingwen Li Yongmin Zhang Fernando Hernandez-Jimenez 《Particuology》 SCIE EI CAS CSCD 2016年第2期10-22,共13页
We report on discrete element method simulations of a pseudo-two-dimensional (pseudo-2D) fluidized bed to investigate particle-wall interactions. Detailed information on macroscopic flow field variables, including s... We report on discrete element method simulations of a pseudo-two-dimensional (pseudo-2D) fluidized bed to investigate particle-wall interactions. Detailed information on macroscopic flow field variables, including solids pressure, granular temperature, and normal and tangential wall stresses are analyzed. The normal wall stress differs from the solids pressure because of the strong anisotropic flow behavior in the pseudo-2D system. A simple linear relationship exists between normal wall stress and solids pressure. In addition, an effective friction coefficient can be derived to characterize particle-wall flow interaction after evaluating the normal and tangential wall stresses. The effects of inter-particle and particle-wall friction coefficients are evaluated. Strong anisotropic flow behavior in the pseudo-2D system needs to be considered to validate the two-fluid model where the boundary condition is usually developed based on an isotropic assumption. The conclusion has been confirmed by simulation with different particle stiffnesses. Assumptions in the newly developed model for 2D simulation are further examined against the discrete element method simulation. 展开更多
关键词 Gas-solid tlow Fluidized bed computational fluid dynamics discrete element method Particle-wall interaction Two-dimensional flow
原文传递
Eulerian-Lagrangian simulation of distinct clustering phenomena and RTDs in riser and downer 被引量:11
8
作者 Yongzhi Zhao Yi Cheng Changning Wu Yulong Ding Yong Jin 《Particuology》 SCIE EI CAS CSCD 2010年第1期44-50,共7页
Numerical simulation of fully developed hydrodynamics of a riser and a downer was carried out using an Eulerian-Lagrangian model, where the particles are modeled by the discrete element method (DEM) and the gas by t... Numerical simulation of fully developed hydrodynamics of a riser and a downer was carried out using an Eulerian-Lagrangian model, where the particles are modeled by the discrete element method (DEM) and the gas by the Navier-Stokes equations. Periodic flow domain with two side walls was adopted to simulate the fully developed dynamics in a 2D channel of 10 cm in width. All the simulations were carried out under the same superficial gas velocity and solids holdup in the domain, starting with a homogenous state for both gas and solids, and followed by the evolution of the dynamics to the heterogeneous state with distinct clustering in the riser and the downer. In the riser, particle clusters move slowly, tending to suspend along the wall or to flow downwards, which causes wide residence time distribution of the particles. In the downer, clusters still exist, but they have faster velocities than the discrete particles. Loosely collected particles in the clusters move in the same direction as the bulk flow, resulting in plug flow in the downer. The residence time distribution (RTD) of solids was computed by tracking the displacements of all particles in the flow direction. The results show a rather wide RTD for the solids in the riser hut a sharp peak RTD in the downer, much in agreement with the experimental findings in the literature. The ensemble average of transient dynamics also shows reasonable profiles of solids volume fraction and solids velocity, and their dependence on particle density. 展开更多
关键词 Hydrodynamics Mixing Riser Downer computational fluid dynamics (CFD)discrete element method (DEM)
原文传递
Modeling and simulation of chemically reacting flows in gas-solid catalytic and non-catalytic processes 被引量:5
9
作者 Changning Wu Binhang Yan Yong Jin Yi Cheng 《Particuology》 SCIE EI CAS CSCD 2010年第6期525-530,共6页
This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian... This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general. 展开更多
关键词 Gas-solid chemically reacting flow Cross-scale modeling and simulation Eulerian-Lagrangian scheme computational fluid dynamics (CFD) discrete element method (DEM) discrete phase model (DPM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部