Discrete element method(DEM)has been intensively used to study the constitutive behaviour of granular materials.However,to what extent a real granular material can be reproduced by virtual DEM simulations remains uncl...Discrete element method(DEM)has been intensively used to study the constitutive behaviour of granular materials.However,to what extent a real granular material can be reproduced by virtual DEM simulations remains unclear.This study attempts to answer this question by comparing DEM simulations with typical features of experimental granular materials.Three groups of models with spherical and clumped particles are investigated from four perspectives:(i)deviatoric stress and volumetric behaviour;(ii)critical state behaviour;(iii)stress-dilatancy relationship;and(iv)the evolution of principal stress ratio against axial strain.The results demonstrate that DEM with spherical or clumped particles is capable of qualitatively describing macroscopic deviatoric stress responses,volumetric behaviour,and critical state behaviour observed in experiments for granular materials.On the other hand,some qualitative deviations between experiments and the investigated DEM simulations are also observed,in terms of the stress-dilatancy behaviour and principal stress ratio against axial strain,which are proven to be critical for constitutive modelling.The results demonstrate that DEM with spherical or clumped particles may not necessarily fully capture experimental features of granular materials even from a qualitative perspective.It is thus encouraged to thoroughly validate DEM with experiments when developing constitutive models based on DEM observations.展开更多
In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP...In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.展开更多
Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. ...Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity.展开更多
Breakage of particles will have greatly influence on mechanical behavior of granular material(GM)under external loads,such as ballast,rockfill and sand.The discrete element method(DEM)is one of the most popular method...Breakage of particles will have greatly influence on mechanical behavior of granular material(GM)under external loads,such as ballast,rockfill and sand.The discrete element method(DEM)is one of the most popular methods for simulating GM as each particle is represented on its own.To study breakage mechanism of particle breakage,a cohesive contact mode is developed based on the GPU accelerated DEM code-Blaze-DEM.A database of the 3D geometry model of rock blocks is established based on the 3D scanning method.And an agglomerate describing the rock block with a series of non-overlapping spherical particles is used to build the DEM numerical model of a railway ballast sample,which is used to the DEM oedometric test to study the particles’breakage characteristics of the sample under external load.Furthermore,to obtain the meso-mechanical parameters used in DEM,a black-analysis method is used based on the laboratory tests of the rock sample.Based on the DEM numerical tests,the particle breakage process and mechanisms of the railway ballast are studied.All results show that the developed code can better used for large scale simulation of the particle breakage analysis of granular material.展开更多
Granular materials are ubiquitous in nature and important in various applications such as road and railway engineering. Granular materials exhibit complicated mechanical behaviors, which are affected significantly by ...Granular materials are ubiquitous in nature and important in various applications such as road and railway engineering. Granular materials exhibit complicated mechanical behaviors, which are affected significantly by the irregular shape of particles. Currently, the discrete element method (DEM) has been accepted as an effective approach to investigate the mechanical behaviors of granular materials. However, there are scarce simulations based on DEM in literatures considering the irregularity of particle shape. A new method is proposed to simulate individual real particle with irregular shape using clump constituted by overlapping spheres. First, the geometric model of real particle with surface nodes and inner nodes is established through digitally processing the computerized tomography (CT) scanning data. Second, a clump consisting of spheres is generated to simulate the real particle using a minimum distance criterion. The criterion is implemented by tree optimization algorithm. Influential factors are also introduced to balance the model accuracy and computing cost. Effects of the influential factors, including the density of geometric grid and the minimum distance, on simulations are discussed. Results show that this new method is simpler and more efficient than the previous methods in terms of the model accuracy and computing cost.展开更多
Most natural resources are processed as particle-fluid multiphase systems in chemical,mineral and material indus-tries,therefore,discrete particles methods(DPM)are reasonable choices of simulation method for engineeri...Most natural resources are processed as particle-fluid multiphase systems in chemical,mineral and material indus-tries,therefore,discrete particles methods(DPM)are reasonable choices of simulation method for engineering the relevant processes and equipments.However,direct application of these methods is challenged by the complex multiscale behavior of such systems,which leads to enormous computational cost or otherwise qualitatively inac-curate description of the mesoscale structures.The coarse-grained DPM based on the energy-minimization multi-scale(EMMS)model,or EMMS-DPM,was proposed to reduce the computational cost by several orders while main-taining an accurate description of the mesoscale structures,which paves the way for its engineering applications.Further empowered by the high-efficiency multi-scale DEM software DEMms and the corresponding customized heterogeneous supercomputing facilities with graphics processing units(GPUs),it may even approach realtime simulation of industrial reactors.This short review will introduce the principle of DPM,in particular,EMMS-DPM,and the recent developments in modeling,numerical implementation and application of large-scale DPM which aims to reach industrial scale on one hand and resolves mesoscale structures critical to reaction-transport coupling on the other hand.This review finally prospects on the future developments of DPM in this direction.展开更多
An inverse method for parameters identification of discrete element model combined with experiment is proposed.The inverse problem of parameter identification is transmitted to solve an optimization problem by minimiz...An inverse method for parameters identification of discrete element model combined with experiment is proposed.The inverse problem of parameter identification is transmitted to solve an optimization problem by minimizing the distance between the numerical calculations and experiment responses.In this method,the discrete element method is employed as numerical calculator for the forward problem.Then,the orthogonal experiment design with range analysis was used to carry out parameters sensitivity analysis.In addition,to improve the computational efficiency,the approximate model technique is used to replace the actual computational model.The intergeneration projection genetic algorithm(IP-GA)is employed as the optimization algorithm.Consequently,the parameters of the discrete element model are determined.To verify the effectiveness and accuracy of the inverse results,the comparisons of shape deviation experiments with discrete element simulations are provided.It indicates that the effective and reliable discrete element model parameters can be quickly obtained through several sets of experimental data.Hence,this inverse method can be applied more widely to determine the parameters of discrete element model for other materials.展开更多
In order to study particle segregation in the rotating drum,the movement of particles is studied by theoretical deduction and numerical simulation.According to the theoretical deduction,particles near the end wall are...In order to study particle segregation in the rotating drum,the movement of particles is studied by theoretical deduction and numerical simulation.According to the theoretical deduction,particles near the end wall are lifted higher by the friction of the end wall,which leads to small particles gathering in the middle of the drum.The model of particle motion is established based on the discrete element method.It can be shown from the simulation results that the particles accumulated highernear the end w al,which is consistent with the theoretical deduction.In addition,the effects from the aspects of te relative friction between particles,the friction between the end wall a d particle,the drum aspect ratio and the rotation speed were explored by thesimulation.From the simulation results,it can be pointed out that the friction of the eed w a i has a decisive influence on the axial segregation of theparticles,and the other factors merely affect the accumulate forms of particles.展开更多
In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avo...In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avoid mesh distortion.Additional mesh smoothing and boundary node smoothing techniques are incorporated to improve the mesh quality and solution accuracy.The field variables are mapped from the old to the new mesh using the closest point projection method to minimize the mapping error.The procedures of the proposed Abaqus-based dynamic PFEM(Abaqus-DPFEM)analysis and its implementation in Abaqus are detailed.The accuracy and robustness of the proposed approach are examined via four illustrative numerical examples.The numerical results show a satisfactory agreement with published results and further confirm the applicability of the Abaqus-DPFEM to solving dynamic large-deformation problems in geotechnical engineering.展开更多
Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal part...Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal particle was developed, and both contact force and gravity force were considered in the models. The simulation results were validated by our experiment. Three algorithms for representing an ellipsoidal particle were compared in macro and micro aspects. The results show that there exists big difference in the microscopic parameters such as kinetic energy, rotational kinetic energy, deformation, contact force and collision number which leads to the difference of macroscopic parameters. The relative error in the discharge rate and tracer particle position is the largest between 3-tangent-element representation and experimental results. The flow pattern is similar for the 5-element and 3-intersection representations. The only difference is the discharge rate of 5-element representation is larger than the experimental value and that of the 3-intersection representation has the contrary result. Finally the 3-intersection- element reoresentation is chosen in the simulation due to less comouting time than that of the 5-element renresentation.展开更多
The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated ...The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.展开更多
This paper presents a convex polyhedral based discrete element method for modelling the dynamic behaviour ofrockfills for resisting high speed projectile penetration. The contact between two convex polyhedra is define...This paper presents a convex polyhedral based discrete element method for modelling the dynamic behaviour ofrockfills for resisting high speed projectile penetration. The contact between two convex polyhedra is defined by theMinkowski overlap and determined by the GJK and EPA algorithm. The contact force is calculated by a Minkowskioverlap based normal model. The rotational motion of polyhedral particles is solved by employing a quaternionbased orientation representation scheme. The energy-conserving nature of the polyhedral DEM method ensures arobust and effective modelling of convex particle systems. The method is applied to simulate the dynamic behaviourof a rockfill system under impact of a high speed projectile. The rockfill sample is generated by a three-dimensionalVoronoi meso method with a specific particle size distribution. The penetrating process of the projectile strikingthe rockfill target is simulated. Some physical quantities associated with the projectile such as the residual velocity,penetration resistance, and deflection angle are monitored which can reflect the influence of the characteristics ofthe rockfill target on its anti-penetration performance. It can be concluded that the developed polyhedral DEMmethod is a very promising numerical approach in analysing the dynamic behaviour of rockfill systems subject tohigh speed projectile impact.展开更多
General purpose computing on GPU for scientific computing has been rapidly growing in recent years. We investigate the applicability of GPU to discrete element method (DEM) often used in particle motion simulation. NV...General purpose computing on GPU for scientific computing has been rapidly growing in recent years. We investigate the applicability of GPU to discrete element method (DEM) often used in particle motion simulation. NVIDIA provides a sample code for this type of simulation, which obtained superior performance than CPU in computational time. A computational model of the contact force in NVIDIA’s sample code is, however, too simple to use in practice. This paper modifies the NVIDIA’s simple model by replacing it with the practical model. The computing speed of the practical model on GPU is compared with the simple one on GPU and with the practical one on CPU in numerical experiments. The result shows that the practical model on GPU obtains the computing speed 6 times faster than the practical one on CPU while 7 times slower than that of the simple one on GPU. The effects of the GPU architectures on the computing speed are analyzed.展开更多
A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resem...A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test ofrockfill materials. Based on a comparison of macro behaviors of the roekfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.展开更多
The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolve...The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolves, it is demonstrated to develop computational multiscale methods using discrete particle assembly-Cosserat continuum modeling in micro- and macro- scales,respectively. The computational homogenization method and the bridge scale method along the concurrent scale linking approach are briefly introduced. Based on the weak form of the Hu-Washizu variational principle, the mixed finite element procedure of gradient Cosserat continuum in the frame of the second-order homogenization scheme is developed. The meso-mechanically informed anisotropic damage of effective Cosserat continuum is characterized and identified and the microscopic mechanisms of macroscopic damage phenomenon are revealed. c 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301101]展开更多
Discrete element method(DEM)has been widely utilised to model the mechanical behaviours of granular materials.However,with simplified particle morphology or rheology-based rolling resistance models,DEM failed to descr...Discrete element method(DEM)has been widely utilised to model the mechanical behaviours of granular materials.However,with simplified particle morphology or rheology-based rolling resistance models,DEM failed to describe some responses,such as the particle kinematics at the grain-scale and the principal stress ratio against axial strain at the macro-scale.This paper adopts a computed tomography(CT)-based DEM technique,including particle morphology data acquisition from micro-CT(mCT),spherical harmonic-based principal component analysis(SH-PCA)-based particle morphology reconstruction and DEM simulations,to investigate the capability of DEM with realistic particle morphology for modelling granular soils’micro-macro mechanical responses with a consideration of the initial packing state,the morphological gene mutation degree,and the confining stress condition.It is found that DEM with realistic particle morphology can reasonably reproduce granular materials’micro-macro mechanical behaviours,including the deviatoric stressevolumetric straineaxial strain response,critical state behaviour,particle kinematics,and shear band evolution.Meanwhile,the role of multiscale particle morphology in granular soils depends on the initial packing state and the confining stress condition.For the same granular soils,rougher particle surfaces with a denser initial packing state and a higher confining stress condition result in a higher degree of shear strain localisation.展开更多
In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was develope...In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance.展开更多
Mechanical behaviors of granular materials are complicated and greatly influenced by the particle shape.Current,some composite approaches have been proposed for realistic particle shape modelling within discrete eleme...Mechanical behaviors of granular materials are complicated and greatly influenced by the particle shape.Current,some composite approaches have been proposed for realistic particle shape modelling within discrete element method(DEM),while they cannot give a good representation to the shape and mass properties of a real particle.In this work,a novel algorithm is developed to model an arbitrary particle using a cluster of non-overlapping disks.The algorithm mainly consists of two components:boundary filling and domain filling.In the boundary filling,some disks are placed along the boundary for a precise representation of the particle shape,and some more disks are placed in the domain to give an approximation to the mass properties of the particle in the domain filling.Besides,a simple method is proposed to correct the mass properties of a cluster after domain filling and reduce the number of the disks in a cluster for lower computational load.Moreover,it is another great merit of the algorithm that a cluster generated by the algorithm can be used to simulate the particle breakage because of no overlaps between the disks in a cluster.Finally,several examples are used to show the robust performance of the algorithm.A current FORTRAN version of the algorithm is available by contacting the author.展开更多
Particle morphology has been regarded as an important factor affecting shear behaviors of sands,and covers three important aspects,i.e.global form(overall shape),local roundness(large-scale smoothness),and surface tex...Particle morphology has been regarded as an important factor affecting shear behaviors of sands,and covers three important aspects,i.e.global form(overall shape),local roundness(large-scale smoothness),and surface texture(roughness)in terms of different observation scales.Shape features of different aspects can be independent of each other but might have coupled effects on the bulk behavior of sands,which has been not explored thoroughly yet.This paper presents a systematic investigation of the coupled effects of the particle overall regularity(OR)and sliding friction on the shear behavior of dense sands using three-dimensional(3D)discrete element method(DEM).The representative volume elements consisting of ideal spheres and irregular clumps of different mass proportions are prepared to conduct drained triaxial compression simulations.A well-defined shape descriptor named OR is adopted to quantify particle shape differences of numerical samples at both form and roundness aspects,and the particle sliding friction coefficient varies from 0.001 to 1 to consider the surface roughness effect equivalently in DEM.The stress-strain relationships as well as peak and critical friction angles of these assemblies are examined systematically.Moreover,contact network and anisotropic fabric characteristics within different granular assemblies are analyzed to explore the microscopic origins of the multi-scale shape-dependent shear strength.This study helps to improve the current understanding with respect to the influence of the particle shape on the shear behavior of sands from different shape aspects.展开更多
Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced conta...Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced contact fabric evolution of an idealised granular material subject to triaxial shearing.The MLbased framework is comprised of a set of mini-triaxial tests which provide a benchmark for the setup and validation of the discrete element method(DEM)model of the granular materials,a parametric DEM simulation programme of virtual triaxial tests which provides datasets of micro-and macro-mechanical information,as well as a multi-layer perceptron(MLP)neural network which is trained and tested using the DEM-based datasets.The ML model only requires the initial void ratio of the granular sample as the input for predicting its constitutive response.The excellent agreement between the ML model prediction and experimental test and DEM simulation results indicates that the MLebased modelling approach is capable of capturing accurately the effects of initial void ratio on the constitutive behaviour of idealised granular materials,bypassing the need to incorporate the complex micromechanics underlying the macroscopic mechanical behaviour of granular materials.Lastly,a detailed comparison between the used MLP model and long short-term memory(LSTM)model was made from the perspective of technical algorithm,prediction accuracy,and computational efficiency.展开更多
文摘Discrete element method(DEM)has been intensively used to study the constitutive behaviour of granular materials.However,to what extent a real granular material can be reproduced by virtual DEM simulations remains unclear.This study attempts to answer this question by comparing DEM simulations with typical features of experimental granular materials.Three groups of models with spherical and clumped particles are investigated from four perspectives:(i)deviatoric stress and volumetric behaviour;(ii)critical state behaviour;(iii)stress-dilatancy relationship;and(iv)the evolution of principal stress ratio against axial strain.The results demonstrate that DEM with spherical or clumped particles is capable of qualitatively describing macroscopic deviatoric stress responses,volumetric behaviour,and critical state behaviour observed in experiments for granular materials.On the other hand,some qualitative deviations between experiments and the investigated DEM simulations are also observed,in terms of the stress-dilatancy behaviour and principal stress ratio against axial strain,which are proven to be critical for constitutive modelling.The results demonstrate that DEM with spherical or clumped particles may not necessarily fully capture experimental features of granular materials even from a qualitative perspective.It is thus encouraged to thoroughly validate DEM with experiments when developing constitutive models based on DEM observations.
基金supported by the National Natural Science Foundation of China(Grant No.52201323).
文摘In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.
基金supported by Department of Energy and Process Engineering,Norwegian University of Science and TechnologyInstitute for Energy Technology and SINTEF through the FACE(Multiphase Flow Assurance Innovation Center) Project
文摘Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity.
基金project of “Natural Science Foundation of China, China (Nos. 5187914, 51679123, 51479095)”
文摘Breakage of particles will have greatly influence on mechanical behavior of granular material(GM)under external loads,such as ballast,rockfill and sand.The discrete element method(DEM)is one of the most popular methods for simulating GM as each particle is represented on its own.To study breakage mechanism of particle breakage,a cohesive contact mode is developed based on the GPU accelerated DEM code-Blaze-DEM.A database of the 3D geometry model of rock blocks is established based on the 3D scanning method.And an agglomerate describing the rock block with a series of non-overlapping spherical particles is used to build the DEM numerical model of a railway ballast sample,which is used to the DEM oedometric test to study the particles’breakage characteristics of the sample under external load.Furthermore,to obtain the meso-mechanical parameters used in DEM,a black-analysis method is used based on the laboratory tests of the rock sample.Based on the DEM numerical tests,the particle breakage process and mechanisms of the railway ballast are studied.All results show that the developed code can better used for large scale simulation of the particle breakage analysis of granular material.
基金Supported by the National Natural Science Foundation of China (51178358)the Key Project of Hubei Provincial Natural Science Foundation(2010CDA057)
文摘Granular materials are ubiquitous in nature and important in various applications such as road and railway engineering. Granular materials exhibit complicated mechanical behaviors, which are affected significantly by the irregular shape of particles. Currently, the discrete element method (DEM) has been accepted as an effective approach to investigate the mechanical behaviors of granular materials. However, there are scarce simulations based on DEM in literatures considering the irregularity of particle shape. A new method is proposed to simulate individual real particle with irregular shape using clump constituted by overlapping spheres. First, the geometric model of real particle with surface nodes and inner nodes is established through digitally processing the computerized tomography (CT) scanning data. Second, a clump consisting of spheres is generated to simulate the real particle using a minimum distance criterion. The criterion is implemented by tree optimization algorithm. Influential factors are also introduced to balance the model accuracy and computing cost. Effects of the influential factors, including the density of geometric grid and the minimum distance, on simulations are discussed. Results show that this new method is simpler and more efficient than the previous methods in terms of the model accuracy and computing cost.
基金supported by the National Natural Sci-ence Foundation of China(Grant Nos.21978295,22078330,92034302 and 91834303)Innovation Academy for Green Manufacture,Chinese Academy of Sciences(Grant Nos.IAGM-2019-A03 and IAGM-2019-A13)+2 种基金Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSWJSC029)“Transformational Technologies for Clean Energy and Demonstration”Strategic Prior-ity Research Program of the Chinese Academy of Sciences(Grant No.XDA21030700)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2019050).
文摘Most natural resources are processed as particle-fluid multiphase systems in chemical,mineral and material indus-tries,therefore,discrete particles methods(DPM)are reasonable choices of simulation method for engineering the relevant processes and equipments.However,direct application of these methods is challenged by the complex multiscale behavior of such systems,which leads to enormous computational cost or otherwise qualitatively inac-curate description of the mesoscale structures.The coarse-grained DPM based on the energy-minimization multi-scale(EMMS)model,or EMMS-DPM,was proposed to reduce the computational cost by several orders while main-taining an accurate description of the mesoscale structures,which paves the way for its engineering applications.Further empowered by the high-efficiency multi-scale DEM software DEMms and the corresponding customized heterogeneous supercomputing facilities with graphics processing units(GPUs),it may even approach realtime simulation of industrial reactors.This short review will introduce the principle of DPM,in particular,EMMS-DPM,and the recent developments in modeling,numerical implementation and application of large-scale DPM which aims to reach industrial scale on one hand and resolves mesoscale structures critical to reaction-transport coupling on the other hand.This review finally prospects on the future developments of DPM in this direction.
基金supported by the National Natural Science Foundation of China(11602212)the Natural Science Foundation of Hunan Province of China(2018JJ3509)supported by the National Natural Science Foundation of China(51605409,11802258,51775468).
文摘An inverse method for parameters identification of discrete element model combined with experiment is proposed.The inverse problem of parameter identification is transmitted to solve an optimization problem by minimizing the distance between the numerical calculations and experiment responses.In this method,the discrete element method is employed as numerical calculator for the forward problem.Then,the orthogonal experiment design with range analysis was used to carry out parameters sensitivity analysis.In addition,to improve the computational efficiency,the approximate model technique is used to replace the actual computational model.The intergeneration projection genetic algorithm(IP-GA)is employed as the optimization algorithm.Consequently,the parameters of the discrete element model are determined.To verify the effectiveness and accuracy of the inverse results,the comparisons of shape deviation experiments with discrete element simulations are provided.It indicates that the effective and reliable discrete element model parameters can be quickly obtained through several sets of experimental data.Hence,this inverse method can be applied more widely to determine the parameters of discrete element model for other materials.
基金The National Natural Science Foundation of China(No.51775109)Jiangsu Science and Technology Support Plan Project(No.BE2014142)
文摘In order to study particle segregation in the rotating drum,the movement of particles is studied by theoretical deduction and numerical simulation.According to the theoretical deduction,particles near the end wall are lifted higher by the friction of the end wall,which leads to small particles gathering in the middle of the drum.The model of particle motion is established based on the discrete element method.It can be shown from the simulation results that the particles accumulated highernear the end w al,which is consistent with the theoretical deduction.In addition,the effects from the aspects of te relative friction between particles,the friction between the end wall a d particle,the drum aspect ratio and the rotation speed were explored by thesimulation.From the simulation results,it can be pointed out that the friction of the eed w a i has a decisive influence on the axial segregation of theparticles,and the other factors merely affect the accumulate forms of particles.
基金the National Natural Science Foundation of China(Grant No.41807223)the Fundamental Research Funds for the Central Universities(Grant No.B210202096)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA 23090202).
文摘In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avoid mesh distortion.Additional mesh smoothing and boundary node smoothing techniques are incorporated to improve the mesh quality and solution accuracy.The field variables are mapped from the old to the new mesh using the closest point projection method to minimize the mapping error.The procedures of the proposed Abaqus-based dynamic PFEM(Abaqus-DPFEM)analysis and its implementation in Abaqus are detailed.The accuracy and robustness of the proposed approach are examined via four illustrative numerical examples.The numerical results show a satisfactory agreement with published results and further confirm the applicability of the Abaqus-DPFEM to solving dynamic large-deformation problems in geotechnical engineering.
基金Supported by the Major State Basic Research Development Program of China (2011CB201505), the National Natural Science Foundation of China (50976025) and the Key Proj ect.of Science and Technology of Henan Province (12B610012).
文摘Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal particle was developed, and both contact force and gravity force were considered in the models. The simulation results were validated by our experiment. Three algorithms for representing an ellipsoidal particle were compared in macro and micro aspects. The results show that there exists big difference in the microscopic parameters such as kinetic energy, rotational kinetic energy, deformation, contact force and collision number which leads to the difference of macroscopic parameters. The relative error in the discharge rate and tracer particle position is the largest between 3-tangent-element representation and experimental results. The flow pattern is similar for the 5-element and 3-intersection representations. The only difference is the discharge rate of 5-element representation is larger than the experimental value and that of the 3-intersection representation has the contrary result. Finally the 3-intersection- element reoresentation is chosen in the simulation due to less comouting time than that of the 5-element renresentation.
基金Project(FRF-AS-10-0058) supported by the Fundamental Research Funds for the Central Universities,China
文摘The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.
基金This work is partially supported by National Natural Science Foundation of China under Grant No.12072217by Open Fund of State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology,Beijing,China[Grant No.SKLCRSM19KFA12].The support is gratefully acknowledged.
文摘This paper presents a convex polyhedral based discrete element method for modelling the dynamic behaviour ofrockfills for resisting high speed projectile penetration. The contact between two convex polyhedra is defined by theMinkowski overlap and determined by the GJK and EPA algorithm. The contact force is calculated by a Minkowskioverlap based normal model. The rotational motion of polyhedral particles is solved by employing a quaternionbased orientation representation scheme. The energy-conserving nature of the polyhedral DEM method ensures arobust and effective modelling of convex particle systems. The method is applied to simulate the dynamic behaviourof a rockfill system under impact of a high speed projectile. The rockfill sample is generated by a three-dimensionalVoronoi meso method with a specific particle size distribution. The penetrating process of the projectile strikingthe rockfill target is simulated. Some physical quantities associated with the projectile such as the residual velocity,penetration resistance, and deflection angle are monitored which can reflect the influence of the characteristics ofthe rockfill target on its anti-penetration performance. It can be concluded that the developed polyhedral DEMmethod is a very promising numerical approach in analysing the dynamic behaviour of rockfill systems subject tohigh speed projectile impact.
文摘General purpose computing on GPU for scientific computing has been rapidly growing in recent years. We investigate the applicability of GPU to discrete element method (DEM) often used in particle motion simulation. NVIDIA provides a sample code for this type of simulation, which obtained superior performance than CPU in computational time. A computational model of the contact force in NVIDIA’s sample code is, however, too simple to use in practice. This paper modifies the NVIDIA’s simple model by replacing it with the practical model. The computing speed of the practical model on GPU is compared with the simple one on GPU and with the practical one on CPU in numerical experiments. The result shows that the practical model on GPU obtains the computing speed 6 times faster than the practical one on CPU while 7 times slower than that of the simple one on GPU. The effects of the GPU architectures on the computing speed are analyzed.
基金supported by the National Key Basic Research Program of China (Grants No. 50879007 and 50979014)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090041110016)
文摘A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test ofrockfill materials. Based on a comparison of macro behaviors of the roekfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.
基金supported by the National Natural Science Foundation of China(11072046,10672033,90715011 and 11102036)the National Basic Research and Development Program(973Program,2010CB731502)
文摘The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolves, it is demonstrated to develop computational multiscale methods using discrete particle assembly-Cosserat continuum modeling in micro- and macro- scales,respectively. The computational homogenization method and the bridge scale method along the concurrent scale linking approach are briefly introduced. Based on the weak form of the Hu-Washizu variational principle, the mixed finite element procedure of gradient Cosserat continuum in the frame of the second-order homogenization scheme is developed. The meso-mechanically informed anisotropic damage of effective Cosserat continuum is characterized and identified and the microscopic mechanisms of macroscopic damage phenomenon are revealed. c 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301101]
基金supported by the General Research Fund from the Research Grant Council of the Hong Kong SAR,China(Grant Nos.CityU 11201020 and CityU 11207321)the National Science Foundation of China(Grant No.42207185)+1 种基金the Contract Research Project from the Geotechnical Engineering Office of the Civil Engineering Development Department of Hong Kong SAR,China(Project Ref.No.CEDD STD-30-2030-1-12R)the BL13W beamline of Shanghai Synchrotron Radiation Facility(SSRF)。
文摘Discrete element method(DEM)has been widely utilised to model the mechanical behaviours of granular materials.However,with simplified particle morphology or rheology-based rolling resistance models,DEM failed to describe some responses,such as the particle kinematics at the grain-scale and the principal stress ratio against axial strain at the macro-scale.This paper adopts a computed tomography(CT)-based DEM technique,including particle morphology data acquisition from micro-CT(mCT),spherical harmonic-based principal component analysis(SH-PCA)-based particle morphology reconstruction and DEM simulations,to investigate the capability of DEM with realistic particle morphology for modelling granular soils’micro-macro mechanical responses with a consideration of the initial packing state,the morphological gene mutation degree,and the confining stress condition.It is found that DEM with realistic particle morphology can reasonably reproduce granular materials’micro-macro mechanical behaviours,including the deviatoric stressevolumetric straineaxial strain response,critical state behaviour,particle kinematics,and shear band evolution.Meanwhile,the role of multiscale particle morphology in granular soils depends on the initial packing state and the confining stress condition.For the same granular soils,rougher particle surfaces with a denser initial packing state and a higher confining stress condition result in a higher degree of shear strain localisation.
基金Project(51978045) supported by the National Natural Science Foundation of ChinaProject([2017]7) supported by Shenshuo Science and Technology Development Project,China。
文摘In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance.
基金Project(2011CB013504)supported by the National Basic Research Program(973 Program)of ChinaProject(2013BAB06B01)supported by Key Projects in the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period,China+1 种基金Projects(51309089,51479049)supported by National Natural Science Foundation of ChinaProject(487237)supported by Natural Sciences and Engineering Research Council of Canada
文摘Mechanical behaviors of granular materials are complicated and greatly influenced by the particle shape.Current,some composite approaches have been proposed for realistic particle shape modelling within discrete element method(DEM),while they cannot give a good representation to the shape and mass properties of a real particle.In this work,a novel algorithm is developed to model an arbitrary particle using a cluster of non-overlapping disks.The algorithm mainly consists of two components:boundary filling and domain filling.In the boundary filling,some disks are placed along the boundary for a precise representation of the particle shape,and some more disks are placed in the domain to give an approximation to the mass properties of the particle in the domain filling.Besides,a simple method is proposed to correct the mass properties of a cluster after domain filling and reduce the number of the disks in a cluster for lower computational load.Moreover,it is another great merit of the algorithm that a cluster generated by the algorithm can be used to simulate the particle breakage because of no overlaps between the disks in a cluster.Finally,several examples are used to show the robust performance of the algorithm.A current FORTRAN version of the algorithm is available by contacting the author.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42077238 and 41941019)the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2020A1515011525)
文摘Particle morphology has been regarded as an important factor affecting shear behaviors of sands,and covers three important aspects,i.e.global form(overall shape),local roundness(large-scale smoothness),and surface texture(roughness)in terms of different observation scales.Shape features of different aspects can be independent of each other but might have coupled effects on the bulk behavior of sands,which has been not explored thoroughly yet.This paper presents a systematic investigation of the coupled effects of the particle overall regularity(OR)and sliding friction on the shear behavior of dense sands using three-dimensional(3D)discrete element method(DEM).The representative volume elements consisting of ideal spheres and irregular clumps of different mass proportions are prepared to conduct drained triaxial compression simulations.A well-defined shape descriptor named OR is adopted to quantify particle shape differences of numerical samples at both form and roundness aspects,and the particle sliding friction coefficient varies from 0.001 to 1 to consider the surface roughness effect equivalently in DEM.The stress-strain relationships as well as peak and critical friction angles of these assemblies are examined systematically.Moreover,contact network and anisotropic fabric characteristics within different granular assemblies are analyzed to explore the microscopic origins of the multi-scale shape-dependent shear strength.This study helps to improve the current understanding with respect to the influence of the particle shape on the shear behavior of sands from different shape aspects.
基金This study was supported by General Research Fund from the Research Grants Council of the Hong Kong SAR(Grant Nos.CityU 11201020 and 11207321)the National Natural Science Foundation of China(Grant No.51779213)as well as Contract Research Project(Ref.No.CEDD STD-30-2030-1-12R)from the Geotechnical Engineering Office.
文摘Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced contact fabric evolution of an idealised granular material subject to triaxial shearing.The MLbased framework is comprised of a set of mini-triaxial tests which provide a benchmark for the setup and validation of the discrete element method(DEM)model of the granular materials,a parametric DEM simulation programme of virtual triaxial tests which provides datasets of micro-and macro-mechanical information,as well as a multi-layer perceptron(MLP)neural network which is trained and tested using the DEM-based datasets.The ML model only requires the initial void ratio of the granular sample as the input for predicting its constitutive response.The excellent agreement between the ML model prediction and experimental test and DEM simulation results indicates that the MLebased modelling approach is capable of capturing accurately the effects of initial void ratio on the constitutive behaviour of idealised granular materials,bypassing the need to incorporate the complex micromechanics underlying the macroscopic mechanical behaviour of granular materials.Lastly,a detailed comparison between the used MLP model and long short-term memory(LSTM)model was made from the perspective of technical algorithm,prediction accuracy,and computational efficiency.