Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii function...The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.展开更多
On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparis...On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparison equations was studied in the past. In this paper, various criteria of stability for discrete nonlinear autonomous comparison equations are completely established. Among them, a criterion for asymptotic stability is not only sufficient, but also necessary, from which a criterion on the function class C, is derived. Both of them can be used to determine the unexponential stability, even in the large, for discrete nonlinear (autonomous or nonautonomous) systems. All the criteria are of simple algebraic forms and can be readily used.展开更多
According to a class of nonlinear SISO discrete systems, the fiizzy sliding mode control problem is considered. Based on Takagi-Sugeno fuzzy model method, a fuzzy model is designed to describe the local dynamic perfor...According to a class of nonlinear SISO discrete systems, the fiizzy sliding mode control problem is considered. Based on Takagi-Sugeno fuzzy model method, a fuzzy model is designed to describe the local dynamic performance of the given nonlinear systems. By using the sliding mode control approach, the global controller is constructed by integrating all the local state controllers and the global supervisory sliding mode controller. The tracking problem can be easily dealt with by taking advantage of the combined controller,and the robustness performance is improved finally. A simulation example is given to show the effectiveness and feasibility of the method proposed.展开更多
This paper concerns the controllability of autonomous and nonautonomous nonlinear discrete systems,in which linear parts might admit certain degeneracy.By introducing Fredholm operators and coincidence degree theory,s...This paper concerns the controllability of autonomous and nonautonomous nonlinear discrete systems,in which linear parts might admit certain degeneracy.By introducing Fredholm operators and coincidence degree theory,sufficient conditions for nonlinear discrete systems to be controllable are presented.In addition,applications are given to illustrate main results.展开更多
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
文摘The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.
文摘On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparison equations was studied in the past. In this paper, various criteria of stability for discrete nonlinear autonomous comparison equations are completely established. Among them, a criterion for asymptotic stability is not only sufficient, but also necessary, from which a criterion on the function class C, is derived. Both of them can be used to determine the unexponential stability, even in the large, for discrete nonlinear (autonomous or nonautonomous) systems. All the criteria are of simple algebraic forms and can be readily used.
基金This work was supported by the National Natural Science Foundation of China (No, 60274099)the Doctoral Dissertation Foundation of Northeastern University (No. 200308).
文摘According to a class of nonlinear SISO discrete systems, the fiizzy sliding mode control problem is considered. Based on Takagi-Sugeno fuzzy model method, a fuzzy model is designed to describe the local dynamic performance of the given nonlinear systems. By using the sliding mode control approach, the global controller is constructed by integrating all the local state controllers and the global supervisory sliding mode controller. The tracking problem can be easily dealt with by taking advantage of the combined controller,and the robustness performance is improved finally. A simulation example is given to show the effectiveness and feasibility of the method proposed.
基金supported by National Natural Science Foundation of China (grant No.41874132)supported by National Natural Science Foundation of China (grant No.11201173)+3 种基金National Natural Science Foundation of China (grant No.11171132,grant No.11571065)Science and Technology Developing Plan of Jilin Province (grant No.20180101220JC)supported by National Basic Research Program of China (grant No.2013CB834100)Jilin DRC (grant No.2017C028-1)。
文摘This paper concerns the controllability of autonomous and nonautonomous nonlinear discrete systems,in which linear parts might admit certain degeneracy.By introducing Fredholm operators and coincidence degree theory,sufficient conditions for nonlinear discrete systems to be controllable are presented.In addition,applications are given to illustrate main results.