期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Comparative study of two fluid model and dense discrete phase model for simulations of gas-solid hydrodynamics in circulating fluidized beds 被引量:3
1
作者 Ying Wu Daoyin Liu +2 位作者 Jinding Hu Jiliang Ma Xiaoping Chen 《Particuology》 SCIE EI CAS CSCD 2021年第2期108-117,共10页
Computational fluid dynamics(CFD)has become a valuable tool to study the complex gas-solid hydrodynamics in the circulating fluidized bed(CFB).Based on the two fluid model(TFM)under the Eulerian-Eulerian framework and... Computational fluid dynamics(CFD)has become a valuable tool to study the complex gas-solid hydrodynamics in the circulating fluidized bed(CFB).Based on the two fluid model(TFM)under the Eulerian-Eulerian framework and the dense discrete phase model(DDPM)under the Eulerian-Lagrangian framework,this work conducts the comparative study of the gas-solid hydrodynamics in a CFB riser by these two different models.Results show that DDPM could be used to predict gas-solid hydrodynamics in the circulating fluidized bed,and there are differences between TFM and DDPM,especially in the radial distribution profiles of solid phase.Sensitivity analysis results show that the gas-solid drag model exhibits significant effects on the results for both the two models.The specularity coefficient and the restitution coefficient in the TFM,as well as the reflection coefficient and the parcel number in the DDPM,exhibit less impact on the simulated results. 展开更多
关键词 CFD simulation Circulating fluidized bed Gas-solid flow Two fluid model Dense discrete phase model
原文传递
Numerical analysis and experimental validation of hydrodynamics of a thin bubbling fluidized bed for various particle-size distributions using a three-dimensional dense discrete phase model 被引量:2
2
作者 Abolhasan Hashemisohi Lijun Wang +1 位作者 Abolghasem Shahbazi Hossein Amini 《Particuology》 SCIE EI CAS CSCD 2020年第2期191-204,共14页
A dense discrete phase model combined with the kinetic theory of granular flows was used to study the bubbling characteristics and segregation of poly-dispersed particle mixtures in a thin fluidized bed.Our simulation... A dense discrete phase model combined with the kinetic theory of granular flows was used to study the bubbling characteristics and segregation of poly-dispersed particle mixtures in a thin fluidized bed.Our simulations showed that in using the hybrid Eulerian-Lagrangian method,the common use of one computational cell in the thickness direction of the thin bed does not predict wall friction correctly.Instead,a three-cell discretization of the thickness direction does predict the wall friction well but six cells were needed to prevent overprediction of the bed expansion.The change in specularity factor(SF)of the model not only affected the predictions of the velocity of particles,but also had a considerable impact on their flow pattern.A decrease in SF,which decreases wall friction,showed an over-prediction in the size of bubbles,particle velocities,and void fraction of the bed,and led to a shift in the circulation center toward the bottom of the bed.The segregation of the Geldart B particles was studied in the narrow range from 400 to 600μm with a standard deviation less than 10%of the average diameter.Simulations showed that large particles accumulated close to the distributor at the bottom of the bed and the center of the bed,but small particles moved towards the wall and top surface.The decrease in the mean particle size and spread in shape of the distribution improves mixing by up to 30%at a superficial gas velocity of around 2.5 times the minimum fluidization velocity.Log-normal mixtures with a small proportion of large particles had the most uniform distribution with a thin layer of jetsam forming at the bottom of the bed.Finally,experimental verification of the segregation and mixing of polydisperse particles with narrow size distribution is suggested. 展开更多
关键词 Computational fluid dynamics FLUIDIZATION Particle size distribution Hybrid Eulerian-Lagrangian model Dense discrete phase model Wall friction
原文传递
Experimental and numerical investigation of liquid-solid binary fluidized beds: Radioactive particle tracking technique and dense discrete phase model simulations 被引量:3
3
作者 Varsha Jain Lipika Kalo +2 位作者 Deepak Kumar Harish J. Pant Rajesh K. Upadhyay 《Particuology》 SCIE EI CAS CSCD 2017年第4期112-122,共11页
Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, ... Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, the behavior of monodisperse and binary liquid-solid fluidized beds of the same density but dif- ferent sizes is investigated using radioactive particle tracking (RPT) technique and a dense discrete phase model (DDPM). Experiments and simulations are performed in monodisperse fluidized beds containing two different sizes of glass beads (0.6 and I mm) and a binary fluidized bed of the same particles for vari- ous bed compositions. The results show that both RPT and DDPM can predict the mixing and segregation pattern in liquid-solid binary fluidized beds. The mean velocity predictions of DDPM are in good agree- ment with the experimental findings for both monodisperse and binary fluidized beds. However, the axial root mean square velocity predictions are only reasonable for bigger particles. Particle-particle interac- tions are found to be critical for predicting the flow behavior of solids in liquid-solid binary fluidized beds. 展开更多
关键词 Binary bed Liquid-solid flow Fluidized bed Radioactive particle tracking Dense discrete phase model
原文传递
Numerical Investigation on Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry in a Rectangular Minichannel
4
作者 WANG Zhibin LI Zilong +2 位作者 JIA Lisi DING Bin CHEN Ying 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期564-577,共14页
Microencapsulation phase change material slurry(MEPCMS) becomes a potential working fluid for cooling high energy density miniaturized components,thanks to the latent heat absorption of particles in the heat transfer ... Microencapsulation phase change material slurry(MEPCMS) becomes a potential working fluid for cooling high energy density miniaturized components,thanks to the latent heat absorption of particles in the heat transfer process.In this work,the Discrete Phase Model(DPM) based on the Euler-Lagrangian method is used to numerically investigate the convective heat transfer characteristics of MEPCMS flowing through a rectangular minichannel with constant heat flux.The results show that particles of MEPCMS are mainly subjected to drag force during the flow.Even so,they can migrate from the high-temperature region to the low-temperature region driven by the thermophoretic force,affecting the particle distribution and phase change process.Moreover,the Nux of the MEPCMS fluctuates due to particle phase change with varying specific heat capacities.Specifically,the value increases first,then decreases,and eventually increases again until it approaches the fully developed value of the pure base fluid as the particles gradually melt.Furthermore,the heat transfer performance of the MEPCMS is influenced by the combination of fluid inlet temperature fluid inlet velocity(v),and mass concentration(c_(m)) of MEPCM particles.The result shows that the maximum reduction of the maximum bottom wall temperature difference(ΔT_(w)) is 23.98% at T_(in)=293.15 K,v=0.15 m·s^(-1),c_(m)=10%. 展开更多
关键词 Microencapsulated phase Change Material Slurry(MPCMS) discrete phase model(DPM) particle-fluid interaction force minichannel heat sink THERMOPHORESIS
原文传递
Numerical Investigation of the Deposition Characteristics of Snow on the Bogie of a High-Speed Train 被引量:3
5
作者 Lu Cai Zhen Lou +2 位作者 Nan Liu Chao An Jiye Zhang 《Fluid Dynamics & Materials Processing》 EI 2020年第1期41-53,共13页
To investigate the deposition distribution of snow particles in the bogie surfaces of a high-speed train,a snow particle deposition model,based on the critical capture velocity and the critical shear velocity,was elab... To investigate the deposition distribution of snow particles in the bogie surfaces of a high-speed train,a snow particle deposition model,based on the critical capture velocity and the critical shear velocity,was elaborated.Simulations based on the unsteady Reynolds-Averaged Navier-Stokes(RANS)approach coupled with Discrete Phase Model(DPM)were used to analyze the motion of snow particles.The results show that the cross beam of the bogie frame,the anti-snake damper,the intermediate brake clamps in the rear wheels,the traction rod and the anti-rolling torsion bar are prone to accumulate snow.The accumulation mass relating to the vertical surface in the rear region,horizontal surface in the front region and the corner area of the bogie is high.The average snow accumulation mass for each component ordered from high to low is as follow:traction rod,frame,bolster,brake clamp 2,anti-rolling torsion bar,brake clamp 1,transverse damper,axle box 2,axle box 1,air spring,anti-snake damper,tread cleaning device.The snow accumulation mass on the front components of the bogie is more significant than that relating to the rear components.Particularly,the average snow accumulation mass of rear brake clamp 2 and axle box 2 is about twice as high as that of the front brake clamp 1 and axle box 1. 展开更多
关键词 High-speed train BOGIE discrete phase model snow drift snow accumulation
下载PDF
NUMERICAL STUDY ON EFFECT OF OPERATING TABLE PROTECTED BY HORIZONTAL LAMINAR FLOW SCREEN
6
作者 范菊莉 杨晓静 +1 位作者 王思涵 郑小漪 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第3期292-296,共5页
Transmission of airborne bacteria is the main factor causing surgical site infection(SSI),which is harmful to patients′health and even lives.Numerical study is conducted on the effect of the operating table protected... Transmission of airborne bacteria is the main factor causing surgical site infection(SSI),which is harmful to patients′health and even lives.Numerical study is conducted on the effect of the operating table protected by horizontal laminar flow screen.Discrete phase model(DPM)is used.Numerical simulation is carried out to evaluate particle trajectories with the Lagrange approach.As a result,the protecting effect of horizontal laminar flow screen is established,and the protecting parameters of the air velocity supplied by the screen and the protecting distance are optimized.The optimized air velocity supplied by the screen should be at 0.4—0.6 m/s.And the protecting distance should be less than 1.3 m.This work provides references for the study on the depuration of operating table or room. 展开更多
关键词 laminar flow screen particle trajectories discrete phase model operating table
下载PDF
Modelling and analysis of initial icing roughness with fixed-grid enthalpy method based on DPM-VOF algorithm 被引量:1
7
作者 Jie LIU Peng KE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第7期168-178,共11页
Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process... Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process.A fixed-grid porous enthalpy method based on the improved Discrete Phase Model(DPM)and Volume of Fluid(VOF)integrated algorithm is developed to solve the multiphase heat transfer problem to give more detailed demonstration of the formation of initial ice roughness.The algorithms to determine the criterion of transformation from DPM to VOF and the allocation of source items during transformation are improved to the general DPM-VOF algorithm.Two verification cases,namely two glycerine-solution droplets impact and single droplet freeze,are conducted to verify the accuracy and reliability of the enthalpy-DPMVOF method,where the simulation results match well with experiment phenomena.Ice roughness on a NACA0012 airfoil is precisely captured and the effects on convective heat transfer characteristics are preliminarily revealed.The results illustrate that the enthalpy-DPM-VOF method could successfully capture the characteristics of motion and the phase change process of droplet,as well as balance the calculation accuracy and efficiency. 展开更多
关键词 discrete phase model Fixed-grid porous enthalpy method Ice roughness Icing modelling Integrated algorithm Multiphase heat transfer Volume of fluid
原文传递
Modeling and simulation of chemically reacting flows in gas-solid catalytic and non-catalytic processes 被引量:5
8
作者 Changning Wu Binhang Yan Yong Jin Yi Cheng 《Particuology》 SCIE EI CAS CSCD 2010年第6期525-530,共6页
This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian... This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general. 展开更多
关键词 Gas-solid chemically reacting flow Cross-scale modeling and simulation Eulerian-Lagrangian scheme Computational fluid dynamics (CFD) discrete element method (DEM) discrete phase model (DPM)
原文传递
Stormwater treatment: examples of computational fluid dynamics modeling
9
作者 Gaoxiang YING John SANSALONE +4 位作者 Srikanth PATHAPATI Giuseppina GAROFALO Marco MAGLIONICO Andrea BOLOGNESI Alessandro ARTINA 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第5期638-648,共11页
Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challen... Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challenges and the expense associated with resolving such challenges have led to the relatively common examination of a spectrum of unit operations and processes. This study applies the principles of computa- tional fluid dynamics (CFD) to predict the particle and pollutant clarification behavior of these systems subject to dilute multiphase flows, typical of rainfall-runoff, within computationally reasonable limits, to a scientifically acceptable degree of accuracy. The Navier-Stokes (NS) system of nonlinear partial differential equations for multi- phase hydrodynamics and separation of entrained particles are solved numerically over the unit operation control volume with the boundary and initial conditions defined and then solved numerically until the desired convergence criteria are met. Flow rates examined are scaled based on sizing of common unit operations such as hydrodynamic separators (HS), wet basins, or filters, and are examined from 1 to 100 percent of the system maximum hydraulic operating flow rate. A standard turbulence model is used to resolve flow, and a discrete phase model (DPM) is utilized to examine the particle clarification response. CFD results closely follow physical model results across the entire range of flow rates. Post-processing the CFD predictions provides an in-depth insight into the mechanistic behavior of unit operations by means of three dimensional (3-D) hydraulic profiles and particle trajectories. Results demon- strate the role of scour in the rapid degradation of unit operations that are not maintained. Comparisons are provided between measured and CFD modeled results and a mass balance error is identified. CFD is arguably the most powerful tool available for our profession since continuous simulation modeling. 展开更多
关键词 STORMWATER unit operations and processes(UOPs) hydrodynamic separation filtration adsorption computational fluid dynamics (CFD) turbulence modeling discrete phase model particle separation detention/reten-tion basins CLARIFICATION
原文传递
Oxygen and Glucose Transportation and Distribution on 3D Osteochondral Scaffold in Silico Model
10
作者 Ziyu Liu Hao Huang +5 位作者 Jingying Yang Maryam Tamaddon Haoyu Wang Yingying Gu Zhenyun Shi Chaozong Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第4期1100-1108,共9页
Nutrients supply especially like nutrients and oxygen play vital role in tissue engineering process.It is found that tissue could not grow very well in the middle of the scaffold because few nutrients could transport ... Nutrients supply especially like nutrients and oxygen play vital role in tissue engineering process.It is found that tissue could not grow very well in the middle of the scaffold because few nutrients could transport to the middle.Nutrient limitations would reduce cell proliferation and differentiation.In that case,there is urgent need to understand the nutrient distribution for both in vitro and in vivo study,as no technology is able for researchers to observe the nutrients transport during those process.In this paper,a numerical model coupling with VOF(volume of fluid)model and species transport model together for predicting the distribution of oxygen and glucose in the scaffold after implantation in to the site is developed.Comparing with our previous in vivo tests,the regenerated tissue distribution has a similar trend as oxygen distribution rather than glucose.The reported scaffold manufactured by additive manufacturing provided a good interconnected structure which facilitated the nutrient transportation in the scaffold.Considering nutrient transportation,this numerical model could be used in better understanding the nutrients transportation in the scaffold,and leading to a better understanding of tissue formation in the scaffold. 展开更多
关键词 Nutrient transport SCAFFOLD Nutrient distribution Computational fluid dynamic discrete phase model
原文传递
Simulation and experiment investigations on fabrication of Fe-based amorphous powders by a novel atomization process equipped with assisted gas nozzles
11
作者 Jia-qi Liu Yan-nan Dong +4 位作者 Pu Wang Huan Zhao Jing Pang Xiao-yu Li Jia-quan Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第6期1142-1155,共14页
Based on computational fluid dynamics method,the effect of atomization gas pressure on the atomization efficiency of Laval nozzle was studied,and then a discrete phase model was established and combined with industria... Based on computational fluid dynamics method,the effect of atomization gas pressure on the atomization efficiency of Laval nozzle was studied,and then a discrete phase model was established and combined with industrial trials to study the effect of a new type of assisted gas nozzles(AGNs)on powder size distribution and amorphous powder yield.The results show that increasing the atomization pressure can effectively improve the gas velocity for the Laval nozzle;however,it will decrease the aspiration pressure,and the optimal atomization pressure is 2.0 MPa.Compared with this,after the application of AGNs with the inlet velocity of 200 m s^(-1),assisted gas jet can increase the velocity of overall droplets in the break-up and solidification area by 40 m s^(-1) and the maximum cooling rate is increased from 1.9×10^(4) to 2.3×10^(4) K s^(-1).The predicted particle behavior is demonstrated by the industrial trails,that is,after the application of AGNs,the median diameter of powders d50 is decreased from 28.42 to 25.56 lm,the sphericity is increased from 0.874 to 0.927,the fraction of amorphous powders is increased from 90.4% to 99.4%,and only the coercivity is increased slightly due to the accumulation of internal stress.It is illustrated that the AGNs can improve the yield of fine amorphous powders,which is beneficial to providing high-performance raw powders for additive manufacturing technology. 展开更多
关键词 Computational fluid dynamics ATOMIZATION Assisted gas nozzle discrete phase model Amorphous powder
原文传递
Numerical investigation of basic oxygen furnace slag modification with gas bottom-blowing and SiO_(2) modifier
12
作者 Chang Liu Yu-feng Tian +4 位作者 Yong-li Xiao Yong-qian Li Yang Li Guang-qiang Li Qiang Wang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第7期1451-1460,共10页
To avoid the volume expansion of basic oxygen furnace (BOF) slag for use in building materials, a hot slag modification process was proposed to reduce free CaO (f-CaO) in the molten slag. A transient 3D numerical mode... To avoid the volume expansion of basic oxygen furnace (BOF) slag for use in building materials, a hot slag modification process was proposed to reduce free CaO (f-CaO) in the molten slag. A transient 3D numerical model of BOF molten slag modification by SiO_(2) particles was established. The flow and heat transfer of molten slag, movement and dissolution of the modifier, and concentration distribution of f-CaO in slag during the modification of BOF were studied. The distribution of f-CaO concentration is inhomogeneous all over the molten slag. The mixing effect at the slag surface is weaker than that at the half-height plane of the slag. To consume the f-CaO below 2.0 wt.% in the slag, the optimum quantity of the SiO_(2) modifier is 10.0% of the mass of the slag. The fine SiO_(2) particles help attain a lower final mass fraction of f-CaO and a higher SiO_(2) utilization ratio. 展开更多
关键词 Basic oxygen furnace slag modification SiO_(2)modifier Free CaO discrete phase model Computational fluid dynamics
原文传递
Numerical investigation of droplet pre-dispersion in a monodisperse droplet spray dryer 被引量:2
13
作者 Jie Xiao Yang Li +5 位作者 Oluwafemi Ayodele George Zhihao Li Shujun Yang Meng Wai Woo Winston Duo Wu Xiao Dong Chen 《Particuology》 SCIE EI CAS CSCD 2018年第3期44-60,共17页
Monodisperse droplet spray dryers have great advantages in particle formation through spray drying because of their ability to produce uniform sized particles. Experimental analyses of this system have shown that drop... Monodisperse droplet spray dryers have great advantages in particle formation through spray drying because of their ability to produce uniform sized particles. Experimental analyses of this system have shown that droplets atomized through the piezoceramic nozzle need to be sufficiently well dispersed before entering the drying chamber to achieve sufficiently dried particles. However, the dispersion dynamics cannot be readily observed because of experimental limitations, and key factors influencing the dispersion state currently remain unclear. This study carried out numerical simulations for droplet dispersions in the dispersion chamber, which allow this important process to be visualized. The system- atic and quantitative analyses on the dispersion states provide valuable data for improving the design of the dispersion chamber, and optimizing the spray drying operation. 展开更多
关键词 Spray drying Monodisperse droplet spray dryer Droplet dispersionCFD simulation Reaction engineering approach (REA) discrete phase model (DPM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部