The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand...The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.展开更多
A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally a...A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally analyze the micro-cyclic plastic response of polycrystals containing micron-sized grains, with special attentions to significant influence of dislocationpenetrable grain boundaries (GBs) on the micro-plastic cyclic responses of polycrystals and underlying dislocation mechanism. Toward this end, a typical polycrystalline rectangular specimen under simple tension-compression loading is considered. Results show that, with the increase of cycle accumulative strain, continual dislocation accumulation and enhanced dislocation-dislocation interactions induce the cyclic hardening behavior; however, when a dynamic balance among dislocation nucleation, penetration through GB and dislocation annihilation is approximately established, cyclic stress gradually tends to saturate. In addition, other factors, including the grain size, cyclic strain amplitude and its history, also have considerable influences on the cyclic hardening and saturation.展开更多
A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resem...A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test ofrockfill materials. Based on a comparison of macro behaviors of the roekfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.展开更多
The NHS is right now confronting huge pressures relating to demand and capacity in radiology. The purpose of this research has been to provide information about MRI usage, details of operational aspects of MRI service...The NHS is right now confronting huge pressures relating to demand and capacity in radiology. The purpose of this research has been to provide information about MRI usage, details of operational aspects of MRI services, and to ascertain the planning intentions of NHS radiology services to keep up and create MRI capacity. The report expands on using Discrete Event Simulation (DES) to inspect and plan the utilisation of NHS hospital resources for the radiology department to help a 24 hr service that is available to outpatients which will help with diminishing patient waiting time, better resource usage, understanding the capacity and demand. Consequently, this research examines to adjust staff and resources with the demand of the MRI. The research was investigated using DES in various scenarios to find which resources are inactive;patients are treated slowly. DES helped in discovering resource utilisation and outpatient throughout the system. It additionally helped in distinguishing the bottlenecks in patient flow. The DES simulation results demonstrated that time for the outpatient in the system is less and more outpatients have been treated too. There is a higher level of outpatient patients leaving the system under 120 minutes. The report uncovered an MRI report interpretation time. Reception room time and MRI waiting room time are decreased significantly. It additionally exhibited with an expanded outflow of outpatients, resources, for example, MRI capacity and radiographer utilisation expanded.展开更多
A successful simulation still requires the user to have good simulation knowledge and well developed modeling skills despite a large number of simulation software products available to users. This paper presents the d...A successful simulation still requires the user to have good simulation knowledge and well developed modeling skills despite a large number of simulation software products available to users. This paper presents the design principles and implementation of a layered modeling system known as General-Purpose user-defined Modeling System (GPMS) which provides the user with multiple accesses to build a simulation model at three different levels of knowledge and skills. It does this by purpose-designed GPMS simulation language, which is briefly described in this paper.展开更多
This research involved an exploratory evaluation of the dynamics of vehicular traffic on a road network across two traffic light-controlled junctions. The study uses the case study of a one-kilometer road system model...This research involved an exploratory evaluation of the dynamics of vehicular traffic on a road network across two traffic light-controlled junctions. The study uses the case study of a one-kilometer road system modelled on Anylogic version 8.8.4. Anylogic is a multi-paradigm simulation tool that supports three main simulation methodologies: discrete event simulation, agent-based modeling, and system dynamics modeling. The system is used to evaluate the implication of stochastic time-based vehicle variables on the general efficiency of road use. Road use efficiency as reflected in this model is based on the percentage of entry vehicles to exit the model within a one-hour simulation period. The study deduced that for the model under review, an increase in entry point time delay has a domineering influence on the efficiency of road use far beyond any other consideration. This study therefore presents a novel approach that leverages Discrete Events Simulation to facilitate efficient road management with a focus on optimum road use efficiency. The study also determined that the inclusion of appropriate random parameters to reflect road use activities at critical event points in a simulation can help in the effective representation of authentic traffic models. The Anylogic simulation software leverages the Classic DEVS and Parallel DEVS formalisms to achieve these objectives.展开更多
Modeling approach using discrete event simulation has been proven to work well in modeling in health care. The aim of our paper is to propose a simulation approach which shows realistic models presenting different pos...Modeling approach using discrete event simulation has been proven to work well in modeling in health care. The aim of our paper is to propose a simulation approach which shows realistic models presenting different possible treatments in different stages of diabetic retinopathy. We have presented three models in order to choose the best treatment for diabetic retinopathy patients. The first model describes the flow of a patient through stages without any medical treatments. It takes 13 years to reach blindness. The second model which includes the laser photocoagulation treatments leads to blindness after 46 years. Then, the third model illustrates the involvement of vitrectomy operation and delays blindness by 23 years. To construct the models, data were taken from experienced doctors and professors of the ophthalmology department in the University hospital Habib Bourguiba and the endocrinology department in the University hospital Hedi Chaker in Sfax, Tunisia. Our objective is to delay reaching the blindness stage as late as possible. Three models were developed, verified and validated through many iterative implementations with ARENA simulation software.展开更多
Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars u...Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars using fewshot machine learning with data provided by DDD simulations.Two types of features are considered:external features comprising specimen size and loading orientation and internal features involving dislocation source length,Schmid factor,the orientation of the most easily activated dislocations and their distance from the free boundary.The yielding stress and stress-strain curves of single-crystal copper micropillar are predicted well by incorporating both external and internal features of the sample as separate or combined inputs.It is found that the machine learning accuracy predictions for single-crystal micropillar compression can be improved by incorporating easily activated dislocation features with external features.However,the effect of easily activated dislocation on yielding is less important compared to the effects of specimen size and Schmid factor which includes information of orientation but becomes more evident in small-sized micropillars.Overall,incorporating internal features,especially the information of most easily activated dislocations,improves predictive capabilities across diverse sample sizes and orientations.展开更多
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi...The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.展开更多
A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck ...A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.展开更多
The flexible extrusion forming process (FEFP) is a sand mold patternless manufacturing technology that enables digital near-net shaping of complex sand molds. But, it is difficult to achieve the gradient sand molds wi...The flexible extrusion forming process (FEFP) is a sand mold patternless manufacturing technology that enables digital near-net shaping of complex sand molds. But, it is difficult to achieve the gradient sand molds with high surface strength and strong interior permeability by FEFP. To solve this problem, an extra-squeeze forming method based on FEFP for gradient sand mold was developed. To further reveal the extra-squeeze forming mechanism, based on the Johnson-Kendall-Roberts (JKR) theory and “gluing” notions, the single and double-sided squeeze models of gradient sand molds were established using the EDEM software. The squeezing processes of sand molds with different cavity depths of 60, 100, 140, 180, and 220 mm were systemically studied under single and double-sided squeeze conditions. The variation in the void fraction of sand mold as also investigated at a variety of extra-squeeze distances of 2, 3, 4, 5, and 6 mm, respectively. Simulation and test results show that a deeper cavity depth weakens the extrusion force transmission, which leads to a decrease in strength. The sand mold permeability and void fraction are identified to be positively correlated, while the tensile strength and void fraction appear to be negatively correlated. The void fraction of sand molds decreases with a longer extra-squeeze distance. A 6 mm extra-squeeze distance for the sand mold with 220 mm cavity depth results in a 26.8% increase in tensile strength with only a 5.7% reduction in the permeability. Hence, the extra- squeeze forming method can improve the quality of the sand mold by producing a gradient sand mold with high surface strength and strong interior permeability.展开更多
This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The ...This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The initial state is homogeneous, but the final packing state is inhomogeneous. The segregation phenomenon (inhomogeneous distribution) is also observed. In the final state, the top layers are composed of mostly light particles. The several layers beneath the top contain more heavy particles than light particles. At the bottom, they also contain more heavy particles than light particles. Furthermore, at both the top and the bottom, particle clustering is observed. The current study also analyses the cause of this inhomogeneity in detail. The main cause of this phenomenon is the velocity difference after collision of these two types of particles induced by the density difference. The present study reveals that even if particles were perfectly mixed, the packing process would lead to the final inhomogeneous mixture. It suggests that special treatment may be required to get the true homogeneous packing.展开更多
In recent years, computer simulation appears to be very advantageous technique for researching the resource-constrained manufacturing system. This paper presents an object-oriented simulation modeling method, which co...In recent years, computer simulation appears to be very advantageous technique for researching the resource-constrained manufacturing system. This paper presents an object-oriented simulation modeling method, which combines the merits of traditional methods such as IDEF0 and Petri Net. In this paper, a four-layer-one-angel hierarchical modeling framework based on OOP is defined. And the modeling description of these layers is expounded, such as: hybrid production control modeling and human resource dispatch modeling. To validate the modeling method, a case study of an auto-product line in a motor manufacturing company has been carried out.展开更多
The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefact...The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefaction behavior of the seabed under wave action.The present study conducted wave flume experiments on silt and silty fine sand beds with varying particle compositions.Furthermore,a comprehensive analysis of the differences and underlying reasons for liquefaction behavior in two different types of soil was conducted from both macroscopic and microscopic perspectives.The experimental results indicate that the silt bed necessitates a lower wave load intensity to attain the liquefaction state in comparison to the silty fine sand bed.Additionally,the duration and development depth of liquefaction are greater in the silt bed.The dissimilarity in liquefaction behavior between the two types of soil can be attributed to the variation in their permeability and plastic deformation capacity.The permeability coefficient and compression modulus of silt are lower than those of silty fine sand.Consequently,silt is more prone to the accumulation of pore pressure and subsequent liquefaction under external loading.Prior research has demonstrated that silt beds with varying consolidation degrees exhibit distinct initial failure modes.Specifically,a dense bed undergoes shear failure,whereas a loose bed experiences initial liquefaction failure.This study utilized discrete element simulation to examine the microscopic mechanisms that underlie this phenomenon.展开更多
This study employs similar simulation testing and discrete element simulation coupling to analyze the failure and deformation processes of a model coal seam's roof.The caving area of the overburden rock is divided...This study employs similar simulation testing and discrete element simulation coupling to analyze the failure and deformation processes of a model coal seam's roof.The caving area of the overburden rock is divided into three zones:the delamination fracture zone,broken fracture zone,and compaction zone.The caving and fracture zones'heights are approximately 110 m above the coal seam,with a maximum subsidence of 11 m.The delamination fracture zone's porosity range is between 0.2 and 0.3,while the remainder of the roof predominantly exhibits a porosity of less than 0.1.In addition,the numerical model's stress analysis revealed that the overburden rock's displacement zone forms an'arch-beam'structure starting from 160 m,with the maximum and minimum stress values decreasing as the distance of advancement increases.In the stress beam interval of the overburden rock,the maximum value changes periodically as the advancement distance increases.Based on a comparative analysis between observable data from on-site work and numerical simulation results,the stress data from the numerical simulation are essentially consistent with the actual results detected on-site,indicating the validity of the numerical simulation results.展开更多
Discrete element method was used to study and analyze the interaction between rice straws and between rice straw and agricultural machinery parts,thereby providing a scientific basis for post-harvest paddy field proce...Discrete element method was used to study and analyze the interaction between rice straws and between rice straw and agricultural machinery parts,thereby providing a scientific basis for post-harvest paddy field processing.Calibrations of rice straw-rice straw,rice straw-agricultural machinery part contact parameters(collision recovery coefficient,static friction coefficient and rolling friction coefficient)constitute an important prerequisite for the discrete element research process.In this study,the collision recovery coefficients of rice straw-steel and rice straw-rice straw were 0.230 and 0.357,respectively,which were calibrated by the collision method.The static friction coefficient and rolling friction coefficient of rice straw-steel were 0.363 and 0.208 respectively,which were calibrated by the inclined plate method and the slope method.The static friction coefficient and rolling friction coefficient of rice straw-rice straw were 0.44 and 0.07,respectively,which were calibrated by the split cylinder method.The paired t-test showed insignificant differences between calibration parameter simulation results and the physical test values(p>0.05).Taking the angle of repose that reflecting rice straw flow and friction characteristics as the evaluation index,the verification tests of the above calibration values indicated that the simulated angle of repose has no significant difference from the physical test value(p>0.05).The side plate lifting test on rice straw of different lengths showed no significant difference between the simulated angle of repose and the physical test value(p>0.05).This study can provide a basis for contact parameters choice in discrete element simulation analysis with rice straw-rice straw and rice straw-agricultural machinery parts as the research object.The calibration method can provide a reference for the contact parameter calibration of other crop straws.展开更多
The strength of sandstone decreases significantly with higher water content attributing to softening effects.This scenario can pose a severe threat to the stability of reservoirs of pumped storage power stations devel...The strength of sandstone decreases significantly with higher water content attributing to softening effects.This scenario can pose a severe threat to the stability of reservoirs of pumped storage power stations developed from abandoned mines,especially when subjected to the cyclic loading condition caused by the repeated drainage and storage of water(fatigue damage).Based on this,it is essential to focus on the fatigue failure characteristics.In this study,the mineral composition of the used sandstone of Ruineng coal mine in Shanxi Province,China,was first tested to elucidate the rock softening mechanism after absorbing water.Next,a numerical model for replicating the mechanical behavior of water-bearing sandstone was established using twodimensional particle flow code(PFC2D)with a novel contact model.Then,16 uniaxial cyclic loading simulations with distinct loading parameters related to reservoir conditions(loading frequency,amplitude level,and maximum stress level)and different water contents were conducted.The numerical results show that all these three loading parameters affect the failure characteristics of sandstone,including irreversible strain,damage evolution,strain behavior,and fatigue life.The influence degree of these three parameters on failure behavior increases in the order of maximum stress level,loading frequency,and amplitude level.However,for the samples with different water contents,their failure characteristics are similar under the same loading conditions.Furthermore,the failure mode is almost unaffected by the loading parameters,while the water content plays a significant role and causing the transformation from the tensile splitting with low water content to the shear failure with higher water content.展开更多
Spike neural networks are inspired by animal brains,and outperform traditional neural networks on complicated tasks.However,spike neural networks are usually used on a large scale,and they cannot be computed on commer...Spike neural networks are inspired by animal brains,and outperform traditional neural networks on complicated tasks.However,spike neural networks are usually used on a large scale,and they cannot be computed on commercial,off-the-shelf computers.A parallel architecture is proposed and developed for discrete-event simulations of spike neural networks.Furthermore,mechanisms for both parallelism degree estimation and dynamic load balance are emphasized with theoretical and computational analysis.Simulation results show the effectiveness of the proposed parallelized spike neural network system and its corresponding support components.展开更多
The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation(6G)wireless communication systems.However,...The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation(6G)wireless communication systems.However,the high dynamics of network topology and large scale of mega-constellation pose new challenges to the constellation simulation and performance evaluation.In this paper,we introduce UltraStar,a lightweight network simulator,which aims to facilitate the complicated simulation for the emerging mega-constellation of unprecedented scale.Particularly,a systematic and extensible architecture is proposed,where the joint requirement for network simulation,quantitative evaluation,data statistics and visualization is fully considered.For characterizing the network,we make lightweight abstractions of physical entities and models,which contain basic representatives of networking nodes,structures and protocol stacks.Then,to consider the high dynamics of Walker constellations,we give a two-stage topology maintenance method for constellation initialization and orbit prediction.Further,based on the discrete event simulation(DES)theory,a new set of discrete events is specifically designed for basic network processes,so as to maintain network state changes over time.Finally,taking the first-generation Starlink of 11927 low earth orbit(LEO)satellites as an example,we use UltraStar to fully evaluate its network performance for different deployment stages,such as characteristics of constellation topology,performance of end-to-end service and effects of network-wide traffic interaction.The simulation results not only demonstrate its superior performance,but also verify the effectiveness of UltraStar.展开更多
Ptanning the design of the emergency department (ED) is a complex process. Hospital readers and architects must consider many complex and interdependent factors, including evolving market demands, patient volume, ca...Ptanning the design of the emergency department (ED) is a complex process. Hospital readers and architects must consider many complex and interdependent factors, including evolving market demands, patient volume, care models, operational processes, staffing, and medical equipment. The application of digital toots, such as discrete event simulation (DES) and space syntax analysis (SSA), arrows hospital administrators and designers to quantitativety and objectively optimize their facilities. This paper presents a case study that utitized both DES and SSA to optimize the care process and to design the space in an ED environment. DES was apptied in three phases: master planning, process improvement in the existing ED, and designing the new ED. SSA was used to compare the new design with the existing layout to evatuate the effectiveness of the new design in supporting visuat surveiltance and care coordination. This case study demonstrates that DES and SSA are effective toots for facilitating decision-making retated to design, reducing capital and operational costs, and improving organizational performance. DES focuses on operational processes and care flow. SSA complements DES with its strength in linking space to human behavior. Combining both tools can lead to high-performance ED design and can extend to broad applications in health care.展开更多
基金Project (2007CB714006) supported by the National Basic Research Program of China
文摘The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.
基金supported by the National Natural Science Foundation of China(No.10672064).
文摘A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally analyze the micro-cyclic plastic response of polycrystals containing micron-sized grains, with special attentions to significant influence of dislocationpenetrable grain boundaries (GBs) on the micro-plastic cyclic responses of polycrystals and underlying dislocation mechanism. Toward this end, a typical polycrystalline rectangular specimen under simple tension-compression loading is considered. Results show that, with the increase of cycle accumulative strain, continual dislocation accumulation and enhanced dislocation-dislocation interactions induce the cyclic hardening behavior; however, when a dynamic balance among dislocation nucleation, penetration through GB and dislocation annihilation is approximately established, cyclic stress gradually tends to saturate. In addition, other factors, including the grain size, cyclic strain amplitude and its history, also have considerable influences on the cyclic hardening and saturation.
基金supported by the National Key Basic Research Program of China (Grants No. 50879007 and 50979014)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090041110016)
文摘A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test ofrockfill materials. Based on a comparison of macro behaviors of the roekfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.
文摘The NHS is right now confronting huge pressures relating to demand and capacity in radiology. The purpose of this research has been to provide information about MRI usage, details of operational aspects of MRI services, and to ascertain the planning intentions of NHS radiology services to keep up and create MRI capacity. The report expands on using Discrete Event Simulation (DES) to inspect and plan the utilisation of NHS hospital resources for the radiology department to help a 24 hr service that is available to outpatients which will help with diminishing patient waiting time, better resource usage, understanding the capacity and demand. Consequently, this research examines to adjust staff and resources with the demand of the MRI. The research was investigated using DES in various scenarios to find which resources are inactive;patients are treated slowly. DES helped in discovering resource utilisation and outpatient throughout the system. It additionally helped in distinguishing the bottlenecks in patient flow. The DES simulation results demonstrated that time for the outpatient in the system is less and more outpatients have been treated too. There is a higher level of outpatient patients leaving the system under 120 minutes. The report uncovered an MRI report interpretation time. Reception room time and MRI waiting room time are decreased significantly. It additionally exhibited with an expanded outflow of outpatients, resources, for example, MRI capacity and radiographer utilisation expanded.
文摘A successful simulation still requires the user to have good simulation knowledge and well developed modeling skills despite a large number of simulation software products available to users. This paper presents the design principles and implementation of a layered modeling system known as General-Purpose user-defined Modeling System (GPMS) which provides the user with multiple accesses to build a simulation model at three different levels of knowledge and skills. It does this by purpose-designed GPMS simulation language, which is briefly described in this paper.
文摘This research involved an exploratory evaluation of the dynamics of vehicular traffic on a road network across two traffic light-controlled junctions. The study uses the case study of a one-kilometer road system modelled on Anylogic version 8.8.4. Anylogic is a multi-paradigm simulation tool that supports three main simulation methodologies: discrete event simulation, agent-based modeling, and system dynamics modeling. The system is used to evaluate the implication of stochastic time-based vehicle variables on the general efficiency of road use. Road use efficiency as reflected in this model is based on the percentage of entry vehicles to exit the model within a one-hour simulation period. The study deduced that for the model under review, an increase in entry point time delay has a domineering influence on the efficiency of road use far beyond any other consideration. This study therefore presents a novel approach that leverages Discrete Events Simulation to facilitate efficient road management with a focus on optimum road use efficiency. The study also determined that the inclusion of appropriate random parameters to reflect road use activities at critical event points in a simulation can help in the effective representation of authentic traffic models. The Anylogic simulation software leverages the Classic DEVS and Parallel DEVS formalisms to achieve these objectives.
文摘Modeling approach using discrete event simulation has been proven to work well in modeling in health care. The aim of our paper is to propose a simulation approach which shows realistic models presenting different possible treatments in different stages of diabetic retinopathy. We have presented three models in order to choose the best treatment for diabetic retinopathy patients. The first model describes the flow of a patient through stages without any medical treatments. It takes 13 years to reach blindness. The second model which includes the laser photocoagulation treatments leads to blindness after 46 years. Then, the third model illustrates the involvement of vitrectomy operation and delays blindness by 23 years. To construct the models, data were taken from experienced doctors and professors of the ophthalmology department in the University hospital Habib Bourguiba and the endocrinology department in the University hospital Hedi Chaker in Sfax, Tunisia. Our objective is to delay reaching the blindness stage as late as possible. Three models were developed, verified and validated through many iterative implementations with ARENA simulation software.
基金supported by the National Natural Science Foundation of China(Grant Nos.12192214 and 12222209).
文摘Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars using fewshot machine learning with data provided by DDD simulations.Two types of features are considered:external features comprising specimen size and loading orientation and internal features involving dislocation source length,Schmid factor,the orientation of the most easily activated dislocations and their distance from the free boundary.The yielding stress and stress-strain curves of single-crystal copper micropillar are predicted well by incorporating both external and internal features of the sample as separate or combined inputs.It is found that the machine learning accuracy predictions for single-crystal micropillar compression can be improved by incorporating easily activated dislocation features with external features.However,the effect of easily activated dislocation on yielding is less important compared to the effects of specimen size and Schmid factor which includes information of orientation but becomes more evident in small-sized micropillars.Overall,incorporating internal features,especially the information of most easily activated dislocations,improves predictive capabilities across diverse sample sizes and orientations.
基金supported by the National Natural Science Foundation of China(Grant Nos.52278407 and 52378407)the China Postdoctoral Science Foundation(Grant No.2023M732670)the support by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation.
文摘The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.
基金financial support from the National Natural Science Foundation of China (No. 51204181)the Research Fund for the Doctoral Program of Higher Education of China (No. 20110095120004)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Nos. 2011QNA10 and 2010QNB17)the China Postdoctoral Science Foundation (No. 20110491485)
文摘A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.
基金This work was financially supported by the National Innovation Center Fund of Lightweight Material Forming Technology and Equipment(No.111902Q-D)the State Key Laboratory Fund of Advanced Forming Technology and Equipment(No.SKL2020008)the National Key Research and Development Program(No.2020YFF0217703).
文摘The flexible extrusion forming process (FEFP) is a sand mold patternless manufacturing technology that enables digital near-net shaping of complex sand molds. But, it is difficult to achieve the gradient sand molds with high surface strength and strong interior permeability by FEFP. To solve this problem, an extra-squeeze forming method based on FEFP for gradient sand mold was developed. To further reveal the extra-squeeze forming mechanism, based on the Johnson-Kendall-Roberts (JKR) theory and “gluing” notions, the single and double-sided squeeze models of gradient sand molds were established using the EDEM software. The squeezing processes of sand molds with different cavity depths of 60, 100, 140, 180, and 220 mm were systemically studied under single and double-sided squeeze conditions. The variation in the void fraction of sand mold as also investigated at a variety of extra-squeeze distances of 2, 3, 4, 5, and 6 mm, respectively. Simulation and test results show that a deeper cavity depth weakens the extrusion force transmission, which leads to a decrease in strength. The sand mold permeability and void fraction are identified to be positively correlated, while the tensile strength and void fraction appear to be negatively correlated. The void fraction of sand molds decreases with a longer extra-squeeze distance. A 6 mm extra-squeeze distance for the sand mold with 220 mm cavity depth results in a 26.8% increase in tensile strength with only a 5.7% reduction in the permeability. Hence, the extra- squeeze forming method can improve the quality of the sand mold by producing a gradient sand mold with high surface strength and strong interior permeability.
基金supported by the State Key Development Program for Basic Research of China (973 Program) (Grant No. 2007CB616905)the National High Technology Research and Development Program of China (863 Program) (Grant No. 2007AA03Z112)+1 种基金the National Natural Science Foundation of China (Grant No. 10805019)the Natural Science Foundation of Guangdong Province of China (Grant No. 8451064101000083)
文摘This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The initial state is homogeneous, but the final packing state is inhomogeneous. The segregation phenomenon (inhomogeneous distribution) is also observed. In the final state, the top layers are composed of mostly light particles. The several layers beneath the top contain more heavy particles than light particles. At the bottom, they also contain more heavy particles than light particles. Furthermore, at both the top and the bottom, particle clustering is observed. The current study also analyses the cause of this inhomogeneity in detail. The main cause of this phenomenon is the velocity difference after collision of these two types of particles induced by the density difference. The present study reveals that even if particles were perfectly mixed, the packing process would lead to the final inhomogeneous mixture. It suggests that special treatment may be required to get the true homogeneous packing.
基金Nationd Natural Science Foundation of Chiina(No.59889505)
文摘In recent years, computer simulation appears to be very advantageous technique for researching the resource-constrained manufacturing system. This paper presents an object-oriented simulation modeling method, which combines the merits of traditional methods such as IDEF0 and Petri Net. In this paper, a four-layer-one-angel hierarchical modeling framework based on OOP is defined. And the modeling description of these layers is expounded, such as: hybrid production control modeling and human resource dispatch modeling. To validate the modeling method, a case study of an auto-product line in a motor manufacturing company has been carried out.
基金The National Natural Science Foundation of China under contract No.41976049the Opening Foundation of Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province under contract No.HBMESO2306。
文摘The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefaction behavior of the seabed under wave action.The present study conducted wave flume experiments on silt and silty fine sand beds with varying particle compositions.Furthermore,a comprehensive analysis of the differences and underlying reasons for liquefaction behavior in two different types of soil was conducted from both macroscopic and microscopic perspectives.The experimental results indicate that the silt bed necessitates a lower wave load intensity to attain the liquefaction state in comparison to the silty fine sand bed.Additionally,the duration and development depth of liquefaction are greater in the silt bed.The dissimilarity in liquefaction behavior between the two types of soil can be attributed to the variation in their permeability and plastic deformation capacity.The permeability coefficient and compression modulus of silt are lower than those of silty fine sand.Consequently,silt is more prone to the accumulation of pore pressure and subsequent liquefaction under external loading.Prior research has demonstrated that silt beds with varying consolidation degrees exhibit distinct initial failure modes.Specifically,a dense bed undergoes shear failure,whereas a loose bed experiences initial liquefaction failure.This study utilized discrete element simulation to examine the microscopic mechanisms that underlie this phenomenon.
基金National Key R&D Program of China(2023YFC3009100,2023YFC3009102)National Natural Science Foundation of China(52304198)Open Fund of the National and Local Joint Engineering Research Center for Safe and Accurate Coal Mining(EC2021016).
文摘This study employs similar simulation testing and discrete element simulation coupling to analyze the failure and deformation processes of a model coal seam's roof.The caving area of the overburden rock is divided into three zones:the delamination fracture zone,broken fracture zone,and compaction zone.The caving and fracture zones'heights are approximately 110 m above the coal seam,with a maximum subsidence of 11 m.The delamination fracture zone's porosity range is between 0.2 and 0.3,while the remainder of the roof predominantly exhibits a porosity of less than 0.1.In addition,the numerical model's stress analysis revealed that the overburden rock's displacement zone forms an'arch-beam'structure starting from 160 m,with the maximum and minimum stress values decreasing as the distance of advancement increases.In the stress beam interval of the overburden rock,the maximum value changes periodically as the advancement distance increases.Based on a comparative analysis between observable data from on-site work and numerical simulation results,the stress data from the numerical simulation are essentially consistent with the actual results detected on-site,indicating the validity of the numerical simulation results.
基金The authors acknowledge that this work was financially supported by the National Natural Science Foundation of China(Grant No.31901408)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2020E097)+2 种基金the Science and Technology Development Project of Jilin Province(Grant No.20200402100NC20200201206JC)2020 China Russia Young Scientists Communication Project.
文摘Discrete element method was used to study and analyze the interaction between rice straws and between rice straw and agricultural machinery parts,thereby providing a scientific basis for post-harvest paddy field processing.Calibrations of rice straw-rice straw,rice straw-agricultural machinery part contact parameters(collision recovery coefficient,static friction coefficient and rolling friction coefficient)constitute an important prerequisite for the discrete element research process.In this study,the collision recovery coefficients of rice straw-steel and rice straw-rice straw were 0.230 and 0.357,respectively,which were calibrated by the collision method.The static friction coefficient and rolling friction coefficient of rice straw-steel were 0.363 and 0.208 respectively,which were calibrated by the inclined plate method and the slope method.The static friction coefficient and rolling friction coefficient of rice straw-rice straw were 0.44 and 0.07,respectively,which were calibrated by the split cylinder method.The paired t-test showed insignificant differences between calibration parameter simulation results and the physical test values(p>0.05).Taking the angle of repose that reflecting rice straw flow and friction characteristics as the evaluation index,the verification tests of the above calibration values indicated that the simulated angle of repose has no significant difference from the physical test value(p>0.05).The side plate lifting test on rice straw of different lengths showed no significant difference between the simulated angle of repose and the physical test value(p>0.05).This study can provide a basis for contact parameters choice in discrete element simulation analysis with rice straw-rice straw and rice straw-agricultural machinery parts as the research object.The calibration method can provide a reference for the contact parameter calibration of other crop straws.
基金This work was supported by the National Natural Science Foundation of China(No.52104125)the funding of State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing(SKLGDUEK2133)+1 种基金the funding of Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province(No.ZJRMG-2020-02)the Fundamental Research Funds for the Central Universities.
文摘The strength of sandstone decreases significantly with higher water content attributing to softening effects.This scenario can pose a severe threat to the stability of reservoirs of pumped storage power stations developed from abandoned mines,especially when subjected to the cyclic loading condition caused by the repeated drainage and storage of water(fatigue damage).Based on this,it is essential to focus on the fatigue failure characteristics.In this study,the mineral composition of the used sandstone of Ruineng coal mine in Shanxi Province,China,was first tested to elucidate the rock softening mechanism after absorbing water.Next,a numerical model for replicating the mechanical behavior of water-bearing sandstone was established using twodimensional particle flow code(PFC2D)with a novel contact model.Then,16 uniaxial cyclic loading simulations with distinct loading parameters related to reservoir conditions(loading frequency,amplitude level,and maximum stress level)and different water contents were conducted.The numerical results show that all these three loading parameters affect the failure characteristics of sandstone,including irreversible strain,damage evolution,strain behavior,and fatigue life.The influence degree of these three parameters on failure behavior increases in the order of maximum stress level,loading frequency,and amplitude level.However,for the samples with different water contents,their failure characteristics are similar under the same loading conditions.Furthermore,the failure mode is almost unaffected by the loading parameters,while the water content plays a significant role and causing the transformation from the tensile splitting with low water content to the shear failure with higher water content.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61003082,60921062,61005077)
文摘Spike neural networks are inspired by animal brains,and outperform traditional neural networks on complicated tasks.However,spike neural networks are usually used on a large scale,and they cannot be computed on commercial,off-the-shelf computers.A parallel architecture is proposed and developed for discrete-event simulations of spike neural networks.Furthermore,mechanisms for both parallelism degree estimation and dynamic load balance are emphasized with theoretical and computational analysis.Simulation results show the effectiveness of the proposed parallelized spike neural network system and its corresponding support components.
基金supported in part by the National Key Research and Development Program of China(2020YFB1806104)the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province(BK20220067)the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation(6G)wireless communication systems.However,the high dynamics of network topology and large scale of mega-constellation pose new challenges to the constellation simulation and performance evaluation.In this paper,we introduce UltraStar,a lightweight network simulator,which aims to facilitate the complicated simulation for the emerging mega-constellation of unprecedented scale.Particularly,a systematic and extensible architecture is proposed,where the joint requirement for network simulation,quantitative evaluation,data statistics and visualization is fully considered.For characterizing the network,we make lightweight abstractions of physical entities and models,which contain basic representatives of networking nodes,structures and protocol stacks.Then,to consider the high dynamics of Walker constellations,we give a two-stage topology maintenance method for constellation initialization and orbit prediction.Further,based on the discrete event simulation(DES)theory,a new set of discrete events is specifically designed for basic network processes,so as to maintain network state changes over time.Finally,taking the first-generation Starlink of 11927 low earth orbit(LEO)satellites as an example,we use UltraStar to fully evaluate its network performance for different deployment stages,such as characteristics of constellation topology,performance of end-to-end service and effects of network-wide traffic interaction.The simulation results not only demonstrate its superior performance,but also verify the effectiveness of UltraStar.
文摘Ptanning the design of the emergency department (ED) is a complex process. Hospital readers and architects must consider many complex and interdependent factors, including evolving market demands, patient volume, care models, operational processes, staffing, and medical equipment. The application of digital toots, such as discrete event simulation (DES) and space syntax analysis (SSA), arrows hospital administrators and designers to quantitativety and objectively optimize their facilities. This paper presents a case study that utitized both DES and SSA to optimize the care process and to design the space in an ED environment. DES was apptied in three phases: master planning, process improvement in the existing ED, and designing the new ED. SSA was used to compare the new design with the existing layout to evatuate the effectiveness of the new design in supporting visuat surveiltance and care coordination. This case study demonstrates that DES and SSA are effective toots for facilitating decision-making retated to design, reducing capital and operational costs, and improving organizational performance. DES focuses on operational processes and care flow. SSA complements DES with its strength in linking space to human behavior. Combining both tools can lead to high-performance ED design and can extend to broad applications in health care.