The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs ...The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs of equivalent bandwidth filters with different center frequency. The corresponding WPD entropy values of coefficients increase sharply when the discrete spectrum interferences (DSIs), frequency spectrum of which is centered at several frequency points existing in some frequency region. Based on WPD, an entropy threshold method (ETM) is put forward, in which entropy is used to determine whether partial discharge (PD) signals are interfered by DSIs. Simulation and real data processing demonstrate that ETM works with good efficiency, without pre-knowing DSI information. ETM extracts the phase of PD pulses accurately and can calibrate the quantity of single type discharge.展开更多
A novel time-frequency domain interference excision technique is proposed. The technique is based on adaptive biorthogonal local discrete cosine trans form (BLDCT). It uses a redundant library of biorthogonal local d...A novel time-frequency domain interference excision technique is proposed. The technique is based on adaptive biorthogonal local discrete cosine trans form (BLDCT). It uses a redundant library of biorthogonal local discrete cosine bases and an efficient concave cost function to match the transform basis to the interfering signal. The main advantage of the algorithm over conventional trans form domain excision algorithms is that the basis functions are not fixed but ca n be adapted to the time-frequency structure of the interfering signal. It is w e ll suited to transform domain compression and suppression of various types of in terference. Compared to the discrete wavelet transform (DWT) that provides logar ithmic division of the frequency bands, the adaptive BLDCT can provide more flex ible frequency resolution. Thus it is more insensitive to variations of jamming frequency. Simulation results demonstrate the improved bit error rate (BER) perf ormance and the increased robustness of the receiver.展开更多
基金Funded by the of the Key Teachers Foundation under the State Ministry Education.
文摘The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs of equivalent bandwidth filters with different center frequency. The corresponding WPD entropy values of coefficients increase sharply when the discrete spectrum interferences (DSIs), frequency spectrum of which is centered at several frequency points existing in some frequency region. Based on WPD, an entropy threshold method (ETM) is put forward, in which entropy is used to determine whether partial discharge (PD) signals are interfered by DSIs. Simulation and real data processing demonstrate that ETM works with good efficiency, without pre-knowing DSI information. ETM extracts the phase of PD pulses accurately and can calibrate the quantity of single type discharge.
基金Project supported by the National Natural Science Foundation of China(Grant No.6017201860372007)
文摘A novel time-frequency domain interference excision technique is proposed. The technique is based on adaptive biorthogonal local discrete cosine trans form (BLDCT). It uses a redundant library of biorthogonal local discrete cosine bases and an efficient concave cost function to match the transform basis to the interfering signal. The main advantage of the algorithm over conventional trans form domain excision algorithms is that the basis functions are not fixed but ca n be adapted to the time-frequency structure of the interfering signal. It is w e ll suited to transform domain compression and suppression of various types of in terference. Compared to the discrete wavelet transform (DWT) that provides logar ithmic division of the frequency bands, the adaptive BLDCT can provide more flex ible frequency resolution. Thus it is more insensitive to variations of jamming frequency. Simulation results demonstrate the improved bit error rate (BER) perf ormance and the increased robustness of the receiver.