This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform...This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform (WGDFT) is derived to replace the traditional Discrete Fourier Transform (DFT). The mixing matrix on each frequency bin could be estimated more precisely from WGDFT coefficients than from DFT coefficients, which improves separation performance. Simulation results verify the validity of WGDFT for frequency domain blind source separation of convolutive mixtures.展开更多
A new algorithm called the weighted least square discrete parameterization (WLSDP) is presented for the parameterization of triangular meshes over a convex planar region. This algorithm is the linear combination of th...A new algorithm called the weighted least square discrete parameterization (WLSDP) is presented for the parameterization of triangular meshes over a convex planar region. This algorithm is the linear combination of the discrete Conformal mapping(DCM) and the discrete Authalic mapping(DAM). It provides the good properties of both DCM and DAM, such as robustness and low distortion. By adjusting the scaling factor q embedded in the WLSDP, satisfactory parameterizations in different special applications can be achieved.展开更多
基金the grant from the Ph.D. Programs Foun-dation of Ministry of Education of China (No. 20060280003)the Shanghai Leading Academic Dis-cipline Project (Project No.T0102).
文摘This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform (WGDFT) is derived to replace the traditional Discrete Fourier Transform (DFT). The mixing matrix on each frequency bin could be estimated more precisely from WGDFT coefficients than from DFT coefficients, which improves separation performance. Simulation results verify the validity of WGDFT for frequency domain blind source separation of convolutive mixtures.
文摘A new algorithm called the weighted least square discrete parameterization (WLSDP) is presented for the parameterization of triangular meshes over a convex planar region. This algorithm is the linear combination of the discrete Conformal mapping(DCM) and the discrete Authalic mapping(DAM). It provides the good properties of both DCM and DAM, such as robustness and low distortion. By adjusting the scaling factor q embedded in the WLSDP, satisfactory parameterizations in different special applications can be achieved.