该文介绍了离散时间傅里叶变换(Discrete Time Fourier Transform,DTFT)的一种等价定义式,分析了DTFT与线性调频Z变换(Chirp-Z transform)的联系与区别,推导出DTFT是一种特殊形式的Chirp-Z变换,具有频谱细化特性。设计了DTFT的快速算法...该文介绍了离散时间傅里叶变换(Discrete Time Fourier Transform,DTFT)的一种等价定义式,分析了DTFT与线性调频Z变换(Chirp-Z transform)的联系与区别,推导出DTFT是一种特殊形式的Chirp-Z变换,具有频谱细化特性。设计了DTFT的快速算法,给出了算法实现步骤。算法计算量分析表明:在相同频率分辨率下,DTFT快速算法的计算量比Chirp-Z变换快速算法小。仿真结果验证了理论推导的正确性和DTFT在频率估计方面的优越性。展开更多
多段正弦信号频谱融合法(简称"原融合算法")是提高低信噪比条件下正弦信号频率估计精度的一条有效途径,具有重要研究意义和应用价值。为满足雷达、声纳、电子对抗等实时性要求较高的频率估计应用需求,提出多段正弦信号快速频...多段正弦信号频谱融合法(简称"原融合算法")是提高低信噪比条件下正弦信号频率估计精度的一条有效途径,具有重要研究意义和应用价值。为满足雷达、声纳、电子对抗等实时性要求较高的频率估计应用需求,提出多段正弦信号快速频谱融合算法。该方法通过设计离散时间傅里叶变换(Discrete Time Fourier Transform,DTFT)快速算法、降维处理加权融合频谱矩阵和1/3主瓣相关性分析处理等措施来降低算法计算量,提高实时性。重点对上述三项措施的原理进行了阐述与分析。计算量对比和仿真实验表明,多段正弦信号快速频谱融合算法在精度损失极小的前提下,能够大幅降低计算量;在信噪比极低的情况下(SNR≤-13 dB),其性能略优于原融合算法。展开更多
As the fractional Fourier transform has attracted a considerable amount of attention in the area of optics and signal processing, the discretization of the fractional Fourier transform becomes vital for the applicatio...As the fractional Fourier transform has attracted a considerable amount of attention in the area of optics and signal processing, the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier transform. Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain, the discretization of the fractional Fourier transform has been investigated recently. A summary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper. The discretizations include sampling in the fractional Fourier domain, discrete-time fractional Fourier transform, fractional Fourier series, discrete fractional Fourier transform (including 3 main types: linear combination-type; sampling-type; and eigen decomposition-type), and other discrete fractional signal transform. It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.展开更多
文摘该文介绍了离散时间傅里叶变换(Discrete Time Fourier Transform,DTFT)的一种等价定义式,分析了DTFT与线性调频Z变换(Chirp-Z transform)的联系与区别,推导出DTFT是一种特殊形式的Chirp-Z变换,具有频谱细化特性。设计了DTFT的快速算法,给出了算法实现步骤。算法计算量分析表明:在相同频率分辨率下,DTFT快速算法的计算量比Chirp-Z变换快速算法小。仿真结果验证了理论推导的正确性和DTFT在频率估计方面的优越性。
文摘多段正弦信号频谱融合法(简称"原融合算法")是提高低信噪比条件下正弦信号频率估计精度的一条有效途径,具有重要研究意义和应用价值。为满足雷达、声纳、电子对抗等实时性要求较高的频率估计应用需求,提出多段正弦信号快速频谱融合算法。该方法通过设计离散时间傅里叶变换(Discrete Time Fourier Transform,DTFT)快速算法、降维处理加权融合频谱矩阵和1/3主瓣相关性分析处理等措施来降低算法计算量,提高实时性。重点对上述三项措施的原理进行了阐述与分析。计算量对比和仿真实验表明,多段正弦信号快速频谱融合算法在精度损失极小的前提下,能够大幅降低计算量;在信噪比极低的情况下(SNR≤-13 dB),其性能略优于原融合算法。
基金the National Natural Science Foundation of China (Grant Nos.60232010 and 60572094)the National Natural Science Founda-tion of China for Distinguished Young Scholars (Grant No.60625104)
文摘As the fractional Fourier transform has attracted a considerable amount of attention in the area of optics and signal processing, the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier transform. Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain, the discretization of the fractional Fourier transform has been investigated recently. A summary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper. The discretizations include sampling in the fractional Fourier domain, discrete-time fractional Fourier transform, fractional Fourier series, discrete fractional Fourier transform (including 3 main types: linear combination-type; sampling-type; and eigen decomposition-type), and other discrete fractional signal transform. It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.