期刊文献+
共找到126,728篇文章
< 1 2 250 >
每页显示 20 50 100
Unlocking the future:Mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response
1
作者 Zhi-Jian Tang Yuan-Ming Pan +2 位作者 Wei Li Rui-Qiong Ma Jian-Liu Wang 《World Journal of Clinical Oncology》 2025年第1期43-52,共10页
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose... BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies. 展开更多
关键词 Ovarian cancer MITOCHONDRIA PROGNOSIS IMMUNOTHERAPY neural network
下载PDF
Augmented Lyapunov Approach to Exponential Stability of Discrete-Time Neural Networks
2
作者 Zi Xin LIU Shu LU +1 位作者 Shou Ming ZHONG Mao YE 《Journal of Mathematical Research and Exposition》 CSCD 2011年第3期479-489,共11页
This paper addresses the problem of robust stability for a class of discrete-time neural networks with time-varying delay and parameter uncertainties.By constructing a new augmented Lyapunov-Krasovskii function,some n... This paper addresses the problem of robust stability for a class of discrete-time neural networks with time-varying delay and parameter uncertainties.By constructing a new augmented Lyapunov-Krasovskii function,some new improved stability criteria are obtained in forms of linear matrix inequality(LMI) technique.Compared with some recent results in the literature,the conservatism of these new criteria is reduced notably.Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results. 展开更多
关键词 discrete-time neural networks robust exponential stability delay-dependent criterion time-varying delay.
下载PDF
ASYMPTOTICAL STABILITY OF NON-AUTONOMOUS DISCRETE-TIME NEURAL NETWORKS WITH GENERALIZED INPUT-OUTPUT FUNCTION
3
作者 阮炯 王军平 郭德典 《Annals of Differential Equations》 2004年第2期155-167,共13页
In this paper, we first introduce the model of discrete-time neural networkswith generalized input--output function and present a proof of the existence of afixed point by Schauder fixed-point principle. Secondly, we ... In this paper, we first introduce the model of discrete-time neural networkswith generalized input--output function and present a proof of the existence of afixed point by Schauder fixed-point principle. Secondly, we study the uniformlyasymptotical stability of equilibrium in non-autonomous discrete--time neuralnetworks and give some sufficient conditions that guarantee the stability of itby using the converse theorem of Lyapunov function. Finally, several examplesand numerical simulations are given to illustrate and reinforce our theories. 展开更多
关键词 non-autonomous discrete-time neural networks generalized inputoutput function asymptotical stability fixed point
原文传递
Robust exponential stability analysis of a larger class of discrete-time recurrent neural networks 被引量:1
4
作者 ZHANG Jian-hai ZHANG Sen-lin LIU Mei-qin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期1912-1920,共9页
The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced t... The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results. 展开更多
关键词 Standard neural network model (SNNM) Robust exponential stability Recurrent neural networks (RNNs) discrete-time Time-delay system Linear matrix inequality (LMI)
下载PDF
Adaptive learning with guaranteed stability for discrete-time recurrent neural networks 被引量:1
5
作者 邓华 吴义虎 段吉安 《Journal of Central South University of Technology》 EI 2007年第5期685-689,共5页
To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real tim... To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm. 展开更多
关键词 recurrent neural networks adaptive learning nonlinear discrete-time systems pattern recognition
下载PDF
Modeling and Control of Nonlinear Discrete-time Systems Based on Compound Neural Networks 被引量:1
6
作者 张燕 梁秀霞 +2 位作者 杨鹏 陈增强 袁著祉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第3期454-459,共6页
An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the no... An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness. 展开更多
关键词 adaptive inverse control compound neural network process control reaction engineering multi-input multi-output nonlinear system
下载PDF
Stability analysis of discrete-time BAM neural networks based on standard neural network models 被引量:1
7
作者 张森林 刘妹琴 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第7期689-696,共8页
To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which inte... To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks. 展开更多
关键词 Standard neural network model (SNNM) Bidirectional associative memory (BAM) Linear matrix inequality (LMI) STABILITY Generalized eigenvalue problem (GEVP)
下载PDF
Attractors and the attraction basins of discrete-time cellular neural networks
8
作者 MaRunnian XiYoumin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期204-208,共5页
The dynamic behavior of discrete-time cellular neural networks(DTCNN), which is strict with zero threshold value, is mainly studied in asynchronous mode and in synchronous mode. In general, a k-attractor of DTCNN is n... The dynamic behavior of discrete-time cellular neural networks(DTCNN), which is strict with zero threshold value, is mainly studied in asynchronous mode and in synchronous mode. In general, a k-attractor of DTCNN is not a convergent point. But in this paper, it is proved that a k-attractor is a convergent point if the strict DTCNN satisfies some conditions. The attraction basin of the strict DTCNN is studied, one example is given to illustrate the previous conclusions to be wrong, and several results are presented. The obtained results on k-attractor and attraction basin not only correct the previous results, but also provide a theoretical foundation of performance analysis and new applications of the DTCNN. 展开更多
关键词 discrete-time cellular neural networks convergent point k-attractor attraction basin.
下载PDF
Improved results on passivity analysis of discrete-time stochastic neural networks with time-varying delay
9
作者 于建江 张侃健 费树岷 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期63-67,共5页
The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of lin... The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. A numerical example is given to show the effectiveness and the benefits of the proposed method. 展开更多
关键词 PASSIVITY discrete-time stochastic neural networks (DSNNs) INTERVAL delay linear matrix INEQUALITIES (LMIs)
下载PDF
Stability analysis of extended discrete-time BAMneural networks based on LMI approach
10
作者 刘妹琴 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期588-594,共7页
We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-tim... We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks. 展开更多
关键词 standard neural network model bidirectional associative memory discrete-time linear matrix inequality global asymptotic stability.
下载PDF
ASYMPTOTIC BEHAVIOR IN NONLINEAR DISCRETE-TIME NEURAL NETWORKS WITH DELAYED FEEDBACK
11
作者 Liu Kaiyu Wang Zhicheng Zhang Hongqiang 《Annals of Differential Equations》 2005年第3期343-348,共6页
This paper is concerned with a delay difference system. Some interesting results are obtained for the asymptotic behaviors of the system. Our theorems improve the corresponding theorems in the relevant literature by r... This paper is concerned with a delay difference system. Some interesting results are obtained for the asymptotic behaviors of the system. Our theorems improve the corresponding theorems in the relevant literature by removing the restriction of the initial conditions. 展开更多
关键词 asymptotic behavior DELAY discrete neural networks
原文传递
Reachable set estimation for discrete-time Markovian jump neural networks with unified uncertain transition probability
12
作者 Yufeng Tian Wengang Ao Peng Shi 《Journal of Automation and Intelligence》 2023年第3期167-174,共8页
This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay.By allowing uncertainty in the transition probabilities,a framework unifies and enhances the generality and realism... This paper focuses on the reachable set estimation for Markovian jump neural networks with time delay.By allowing uncertainty in the transition probabilities,a framework unifies and enhances the generality and realism of these systems.To fully exploit the unified uncertain transition probabilities,an equivalent transformation technique is introduced as an alternative to traditional estimation methods,effectively utilizing the information of transition probabilities.Furthermore,a vector Wirtinger-based summation inequality is proposed,which captures more system information compared to existing ones.Building upon these components,a novel condition that guarantees a reachable set estimation is presented for Markovian jump neural networks with unified uncertain transition probabilities.A numerical example is illustrated to demonstrate the superiority of the approaches. 展开更多
关键词 Markovian jump neural networks Unified uncertain transition probabilities Reachable set estimation Double-boundary approach Vector wirtinger-based summation inequality
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:7
13
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
14
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
下载PDF
Global Piecewise Analysis of HIV Model with Bi-Infectious Categories under Ordinary Derivative and Non-Singular Operator with Neural Network Approach
15
作者 Ghaliah Alhamzi Badr Saad TAlkahtani +1 位作者 Ravi Shanker Dubey Mati ur Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期609-633,共25页
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i... This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately. 展开更多
关键词 HIV infection model qualitative scheme approximate solution piecewise global operator neural network
下载PDF
Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks 被引量:1
16
作者 Lu Wei Zhong Ma Chaojie Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期981-1000,共20页
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd... The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization. 展开更多
关键词 QUANTIZATION neural network hybrid asymmetric ACCURACY
下载PDF
A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets 被引量:1
17
作者 Bo Wang Han Zhou +3 位作者 Shan Jing Qiang Zheng Wenjie Lan Shaowei Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期71-83,共13页
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ... An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%. 展开更多
关键词 Artificial neural network Drop size Solvent extraction Pulsed column Two-phase flow HYDRODYNAMICS
下载PDF
Multi-Scale-Matching neural networks for thin plate bending problem 被引量:1
18
作者 Lei Zhang Guowei He 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期11-15,共5页
Physics-informed neural networks are a useful machine learning method for solving differential equations,but encounter challenges in effectively learning thin boundary layers within singular perturbation problems.To r... Physics-informed neural networks are a useful machine learning method for solving differential equations,but encounter challenges in effectively learning thin boundary layers within singular perturbation problems.To resolve this issue,multi-scale-matching neural networks are proposed to solve the singular perturbation problems.Inspired by matched asymptotic expansions,the solution is decomposed into inner solutions for small scales and outer solutions for large scales,corresponding to boundary layers and outer regions,respectively.Moreover,to conform neural networks,we introduce exponential stretched variables in the boundary layers to avoid semiinfinite region problems.Numerical results for the thin plate problem validate the proposed method. 展开更多
关键词 Singular perturbation Physics-informed neural networks Boundary layer Machine learning
下载PDF
Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions 被引量:1
19
作者 Jianlin Huang Rundi Qiu +1 位作者 Jingzhu Wang Yiwei Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期76-81,共6页
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig... Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future. 展开更多
关键词 Physics-informed neural networks(PINNs) MULTI-SCALE Fluid dynamics Boundary layer
下载PDF
Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks 被引量:1
20
作者 Asad Raza Shahzad Memon +1 位作者 Muhammad Ali Nizamani Mahmood Hussain Shah 《Intelligent Automation & Soft Computing》 2024年第3期545-566,共22页
Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerabl... Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments. 展开更多
关键词 Industrial internet of things smart industrial environment cyber-attacks convolutional neural network ensemble learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部