This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep lea...Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-K...This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criter...An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criteria of exponential stability are obtained based on norm inequality methods. A numerical example is given todemonstrate that those criteria are useful to analyzing the stability of nonlinear NCSs.展开更多
An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the no...An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.展开更多
This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is pr...This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.展开更多
On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in m...On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in multilingual environment and formulate corresponding control strategies to reduce the harm caused by rumor propagation.In this paper,considering the multilingual environment and intervention mechanism in the rumor-spreading process,an improved ignorants–spreaders-1–spreaders-2–removers(I2SR)rumor-spreading model with time delay and the nonlinear incidence is established in heterogeneous networks.Firstly,based on the mean-field equations corresponding to the model,the basic reproduction number is derived to ensure the existence of rumor-spreading equilibrium.Secondly,by applying Lyapunov stability theory and graph theory,the global stability of rumor-spreading equilibrium is analyzed in detail.In particular,aiming at the lowest control cost,the optimal control scheme is designed to optimize the intervention mechanism,and the optimal control conditions are derived using the Pontryagin's minimum principle.Finally,some illustrative examples are provided to verify the effectiveness of the theoretical results.The results show that optimizing the intervention mechanism can effectively reduce the densities of spreaders-1 and spreaders-2 within the expected time,which provides guiding insights for public opinion managers to control rumors.展开更多
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining...A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.展开更多
This paper studies deterministic and stochastic fixedtime stability of autonomous nonlinear discrete-time(DT)systems.Lyapunov conditions are first presented under which the fixed-time stability of deterministic DT sys...This paper studies deterministic and stochastic fixedtime stability of autonomous nonlinear discrete-time(DT)systems.Lyapunov conditions are first presented under which the fixed-time stability of deterministic DT systems is certified.Extensions to systems under deterministic perturbations as well as stochastic noise are then considered.For the former,sensitivity to perturbations for fixed-time stable DT systems is analyzed,and it is shown that fixed-time attractiveness results from the presented Lyapunov conditions.For the latter,sufficient Lyapunov conditions for fixed-time stability in probability of nonlinear stochastic DT systems are presented.The fixed upper bound of the settling-time function is derived for both fixed-time stable and fixed-time attractive systems,and a stochastic settling-time function fixed upper bound is derived for stochastic DT systems.Illustrative examples are given along with simulation results to verify the introduced results.展开更多
Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to ...Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.展开更多
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e...Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.展开更多
An event-triggered scheme is proposed to solve the problems of robust guaranteed cost control for a class of two-dimensional(2-D)discrete-time systems.Firstly,an eventtriggered scheme is proposed for 2-D discrete-time...An event-triggered scheme is proposed to solve the problems of robust guaranteed cost control for a class of two-dimensional(2-D)discrete-time systems.Firstly,an eventtriggered scheme is proposed for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities.Then,according to the Lyapunov functional method,the sufficient conditions for the existence of event-triggered robust guaranteed cost controller for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities are given.Furthermore,based on the sufficient conditions and the linear matrix inequality(LMI)technique,the problem of designing event-triggered robust guaranteed cost controller is transformed into a feasible solution problem of LMI.Finally,a numerical example is given to demonstrate that,under the proposed event-triggered robust guaranteed cost control,the closed-loop system is asymptotically stable and fewer communication resources are occupied.展开更多
To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real tim...To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm.展开更多
“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information an...“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas.展开更多
During the transient process of gas drilling conditions,the monitoring data often has obvious nonlinear fluctuation features,which leads to large classification errors and time delays in the commonly used intelligent ...During the transient process of gas drilling conditions,the monitoring data often has obvious nonlinear fluctuation features,which leads to large classification errors and time delays in the commonly used intelligent classification models.Combined with the structural features of data samples obtained from monitoring while drilling,this paper uses convolution algorithm to extract the correlation features of multiple monitoring while drilling parameters changing with time,and applies RBF network with nonlinear classification ability to classify the features.In the training process,the loss function component based on distance mean square error is used to effectively adjust the best clustering center in RBF.Many field applications show that,the recognition accuracy of the above nonlinear classification network model for gas production,water production and drill sticking is 97.32%,95.25%and 93.78%.Compared with the traditional convolutional neural network(CNN)model,the network structure not only improves the classification accuracy of conditions in the transition stage of conditions,but also greatly advances the time points of risk identification,especially for the three common risk identification points of gas production,water production and drill sticking,which are advanced by 56,16 and 8 s.It has won valuable time for the site to take correct risk disposal measures in time,and fully demonstrated the applicability of nonlinear classification neural network in oil and gas field exploration and development.展开更多
This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined...This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined known function. In order to compensate the effect of uncertainty, a robust control input is derived by formulating an equivalent optimal control problem for a virtual nominal system with a modified costfunctional. To derive the stabilizing control law for a mismatched system, this paper introduces another control input named as virtual input. This virtual input is not applied directly to stabilize the uncertain system, rather it is used to define a sufficient condition. To solve the nonlinear optimal control problem, a discretetime general Hamilton-Jacobi-Bellman(DT-GHJB) equation is considered and it is approximated numerically through a neural network(NN) implementation. The approximated solution of DTGHJB is used to compute the suboptimal control input for the virtual system. The suboptimal inputs for the virtual system ensure the asymptotic stability of the closed-loop uncertain system. A numerical example is illustrated with simulation results to prove the efficacy of the proposed control algorithm.展开更多
In this paper, by using both the linear stability analysis and Lyapunov function approach, some conditions for stabilizing synchronization behavior in a discrete-time complex dynamical network were derived. These cond...In this paper, by using both the linear stability analysis and Lyapunov function approach, some conditions for stabilizing synchronization behavior in a discrete-time complex dynamical network were derived. These conditions were determined by the coupling strength and the eigenvalues of coupling configuration matrix. Furthermore, some explicit results were obtained when the coupling map between the nodes is equal to the dynamics function of the network, which implies that the product of the coupling strength and the eigenvalues is bounded.展开更多
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094).
文摘Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
文摘This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
文摘An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criteria of exponential stability are obtained based on norm inequality methods. A numerical example is given todemonstrate that those criteria are useful to analyzing the stability of nonlinear NCSs.
基金Supported by the National Natural Science Foundation of China (60575009, 60574036)
文摘An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.
文摘This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.
基金the National Natural Science Foundation of People’s Republic of China(Grant Nos.U1703262 and 62163035)the Special Project for Local Science and Technology Development Guided by the Central Government(Grant No.ZYYD2022A05)Xinjiang Key Laboratory of Applied Mathematics(Grant No.XJDX1401)。
文摘On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in multilingual environment and formulate corresponding control strategies to reduce the harm caused by rumor propagation.In this paper,considering the multilingual environment and intervention mechanism in the rumor-spreading process,an improved ignorants–spreaders-1–spreaders-2–removers(I2SR)rumor-spreading model with time delay and the nonlinear incidence is established in heterogeneous networks.Firstly,based on the mean-field equations corresponding to the model,the basic reproduction number is derived to ensure the existence of rumor-spreading equilibrium.Secondly,by applying Lyapunov stability theory and graph theory,the global stability of rumor-spreading equilibrium is analyzed in detail.In particular,aiming at the lowest control cost,the optimal control scheme is designed to optimize the intervention mechanism,and the optimal control conditions are derived using the Pontryagin's minimum principle.Finally,some illustrative examples are provided to verify the effectiveness of the theoretical results.The results show that optimizing the intervention mechanism can effectively reduce the densities of spreaders-1 and spreaders-2 within the expected time,which provides guiding insights for public opinion managers to control rumors.
基金This work is supported by the National Natural Science Foundation of China (No.60421002) Priority supported financially by the New Century 151 Talent Project of Zhejiang Province.
文摘A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.
基金This work relates to Department of Navy award N00014-22-1-2159 issued by the Office of Naval Research。
文摘This paper studies deterministic and stochastic fixedtime stability of autonomous nonlinear discrete-time(DT)systems.Lyapunov conditions are first presented under which the fixed-time stability of deterministic DT systems is certified.Extensions to systems under deterministic perturbations as well as stochastic noise are then considered.For the former,sensitivity to perturbations for fixed-time stable DT systems is analyzed,and it is shown that fixed-time attractiveness results from the presented Lyapunov conditions.For the latter,sufficient Lyapunov conditions for fixed-time stability in probability of nonlinear stochastic DT systems are presented.The fixed upper bound of the settling-time function is derived for both fixed-time stable and fixed-time attractive systems,and a stochastic settling-time function fixed upper bound is derived for stochastic DT systems.Illustrative examples are given along with simulation results to verify the introduced results.
基金supported by the National Natural Science Foundation of China(61074004)the Research Fund for the Doctoral Program of Higher Education(20110121110017)
文摘Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.
基金financial support provided by the Future Energy System at University of Alberta and NSERC Discovery Grant RGPIN-2023-04084。
文摘Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.
基金supported by the National Natural Science Foundation of China(61573129 U1804147)+2 种基金the Innovative Scientists and Technicians Team of Henan Provincial High Education(20IRTSTHN019)the Innovative Scientists and Technicians Team of Henan Polytechnic University(T2019-2 T2017-1)
文摘An event-triggered scheme is proposed to solve the problems of robust guaranteed cost control for a class of two-dimensional(2-D)discrete-time systems.Firstly,an eventtriggered scheme is proposed for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities.Then,according to the Lyapunov functional method,the sufficient conditions for the existence of event-triggered robust guaranteed cost controller for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities are given.Furthermore,based on the sufficient conditions and the linear matrix inequality(LMI)technique,the problem of designing event-triggered robust guaranteed cost controller is transformed into a feasible solution problem of LMI.Finally,a numerical example is given to demonstrate that,under the proposed event-triggered robust guaranteed cost control,the closed-loop system is asymptotically stable and fewer communication resources are occupied.
基金Project(50276005) supported by the National Natural Science Foundation of China Projects (2006CB705400, 2003CB716206) supported by National Basic Research Program of China
文摘To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm.
文摘“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas.
基金supported by the National Key R&D Program of China(2019YFA0708303)the Sichuan Science and Technology Program(2021YFG0318)+2 种基金the Engineering Technology Joint Research Institute Project of CCDC-SWPU(CQXN-2021-03)the PetroChina Innovation Foundation(2020D-5007-0312)the Key projects of NSFC(61731016).
文摘During the transient process of gas drilling conditions,the monitoring data often has obvious nonlinear fluctuation features,which leads to large classification errors and time delays in the commonly used intelligent classification models.Combined with the structural features of data samples obtained from monitoring while drilling,this paper uses convolution algorithm to extract the correlation features of multiple monitoring while drilling parameters changing with time,and applies RBF network with nonlinear classification ability to classify the features.In the training process,the loss function component based on distance mean square error is used to effectively adjust the best clustering center in RBF.Many field applications show that,the recognition accuracy of the above nonlinear classification network model for gas production,water production and drill sticking is 97.32%,95.25%and 93.78%.Compared with the traditional convolutional neural network(CNN)model,the network structure not only improves the classification accuracy of conditions in the transition stage of conditions,but also greatly advances the time points of risk identification,especially for the three common risk identification points of gas production,water production and drill sticking,which are advanced by 56,16 and 8 s.It has won valuable time for the site to take correct risk disposal measures in time,and fully demonstrated the applicability of nonlinear classification neural network in oil and gas field exploration and development.
文摘This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined known function. In order to compensate the effect of uncertainty, a robust control input is derived by formulating an equivalent optimal control problem for a virtual nominal system with a modified costfunctional. To derive the stabilizing control law for a mismatched system, this paper introduces another control input named as virtual input. This virtual input is not applied directly to stabilize the uncertain system, rather it is used to define a sufficient condition. To solve the nonlinear optimal control problem, a discretetime general Hamilton-Jacobi-Bellman(DT-GHJB) equation is considered and it is approximated numerically through a neural network(NN) implementation. The approximated solution of DTGHJB is used to compute the suboptimal control input for the virtual system. The suboptimal inputs for the virtual system ensure the asymptotic stability of the closed-loop uncertain system. A numerical example is illustrated with simulation results to prove the efficacy of the proposed control algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant No.10471087), and Science Foundation of Shanghai Municipal Commission of Education (Grant No.03AK33)
文摘In this paper, by using both the linear stability analysis and Lyapunov function approach, some conditions for stabilizing synchronization behavior in a discrete-time complex dynamical network were derived. These conditions were determined by the coupling strength and the eigenvalues of coupling configuration matrix. Furthermore, some explicit results were obtained when the coupling map between the nodes is equal to the dynamics function of the network, which implies that the product of the coupling strength and the eigenvalues is bounded.