期刊文献+
共找到12,089篇文章
< 1 2 250 >
每页显示 20 50 100
Characteristic Model-based Discrete-time Sliding Mode Control for Spacecraft with Variable Tilt of Flexible Structures 被引量:5
1
作者 Lei Chen Yan Yan +1 位作者 Chaoxu Mu Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第1期42-50,共9页
In this paper, the finite-time attitude tracking control problem for the spacecrafts with variable tilt of flexible appendages in the conditions of exogenous disturbances and inertia uncertainties is addressed. First ... In this paper, the finite-time attitude tracking control problem for the spacecrafts with variable tilt of flexible appendages in the conditions of exogenous disturbances and inertia uncertainties is addressed. First the characteristic modeling method is applied to the problem of the spacecraft modeling. Second, a novel adaptive sliding mode surface is designed based on the characteristic model. Furthermore, a discrete-time sliding mode control (DTSMC) law, which makes the tracking error converge into a predefined bound in finite time, is proposed by employing the parameters of characteristic model associated with the sliding mode surface to provide better performances, robustness, faster response, and higher control precision. The designed DTSMC includes the adaptive control architecture and is chattering-free. Finally, digital simulations of a sun synchronous orbit satellite (SSOS) are presented to illustrate effectiveness of the control strategies as well as to verify the practical feasibility of the rapid maneuver mission. © 2014 Chinese Association of Automation. 展开更多
关键词 Flexible structures NAVIGATION ORBITS SPACECRAFT
下载PDF
Discrete-time sliding mode control with power rate exponential reaching law of a pneumatic artificial muscle system 被引量:1
2
作者 Quy-Thinh Dao Trung-Kien Le Tri +1 位作者 Van-Anh Nguyen Manh-Linh Nguyen 《Control Theory and Technology》 EI CSCD 2022年第4期514-524,共11页
This paper develops a discrete-time sliding mode controller with a power rate exponential reaching law approach to enhance the performance of a pneumatic artificial muscle system in both reaching time and chattering r... This paper develops a discrete-time sliding mode controller with a power rate exponential reaching law approach to enhance the performance of a pneumatic artificial muscle system in both reaching time and chattering reduction.The proposed method dynamically adapts to the variation of the switching function,which is based on an exponential term and a power rate term of the sliding surface.Thus,the controlled system can achieve high tracking performance while still obtain chattering-free control.Moreover,the effectiveness of the proposed method is validated through multiple experimental tests,focused on a dual pneumatic artificial muscle system.Finally,experimental results show the effectiveness of the proposed approach in this paper. 展开更多
关键词 Pneumatic artificial muscle discrete-time sliding mode control Exponential reaching law CHATTERING
原文传递
Variable structure control with sliding mode prediction for discrete-time nonlinear systems 被引量:4
3
作者 Lingfei XIAO Hongye SU Xiaoyu ZHANG Jian CHU 《控制理论与应用(英文版)》 EI 2006年第2期140-146,共7页
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining... A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination. 展开更多
关键词 Variable structure control sliding mode prediction discrete-time nonlinear system Pendulum experiment
下载PDF
Robust Sliding Mode Control for Nonlinear Discrete-Time Delayed Systems Based on Neural Network 被引量:4
4
作者 Vishal Goyal Vinay Kumar Deolia Tripti Nath Sharma 《Intelligent Control and Automation》 2015年第1期75-83,共9页
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th... This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach. 展开更多
关键词 discrete-time NONLINEAR Systems LYAPUNOV-KRASOVSKII Functional Linear Matrix Inequality (LMI) sliding mode CONTROL (SMC) CHEBYSHEV Neural Networks (CNNs)
下载PDF
Robust Self-tuning Control Based on Discrete-time Sliding Mode for Auto-regressive Mathematical Model in the Presence of Unmodelled Dynamics
5
作者 Nabiha Touijer Samira Kamoun 《International Journal of Automation and computing》 EI CSCD 2016年第3期277-284,共8页
In this paper, we propose a new robust selfbtuning control, called the generalized minimum variance a/-equivalent self- tuning control (GMVSTC-a/) for the linear timevarying (LTV) systems, which can be described b... In this paper, we propose a new robust selfbtuning control, called the generalized minimum variance a/-equivalent self- tuning control (GMVSTC-a/) for the linear timevarying (LTV) systems, which can be described by the discrete-time auto-regressive exogenous (ARX) mathematical model in the presence of unmodelled dynamics. The estimation of the parameters contained in this mathematical model is made on the basis of the proposed modified recursive least squares (m-RLS) parametric estimation algorithm with dead zone and forgetting factor. The stability analysis of the proposed parametric estimation algorithm m-RLS is treated on the basis of a Lyapunov function. A numerical simulation example is used to prove the performances and the effectiveness of the explicit scheme of the proposed robust self-tuning control GMVSTC-a/. 展开更多
关键词 discrete-time systems parametric uncertainty robust estimation robust self-tuning control sliding mode control sta-bility.
原文传递
New adaptive quasi-sliding mode control for nonlinear discrete-time systems 被引量:11
6
作者 Wang Weihong1,2 & Hou Zhongsheng3 1. School of Tra?c and Transportation, Beijing Jiaotong Univ., Beijing 100044, P. R. China 2. Dept. of Automation, Taiyuan Univ. of Science & Technology, Taiyuan 030024, P. R. China 3. Advanced Control Systems Lab, School of Electronics and Information Engineering, Beijing Jiaotong Univ., Beijing 100044, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期154-160,共7页
A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free,... A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free, and is based directly on pseudo-partial-derivatives derived on-line from the input and output information of the system using an improved recursive projection type of identification algorithm. The theoretical analysis and simulation results show that the adaptive quasi-sliding mode control system is stable and convergent. 展开更多
关键词 quasi-sliding mode control adaptive control model-free control pseudo-partial-derivative
下载PDF
Robust Sliding-mode Filtering for a Class of Uncertain Nonlinear Discrete-time State-delayed Systems 被引量:2
7
作者 WU Li-Gang WANG Chang-Hong ZENG Qing-Shuang GAO Hui-Jun 《自动化学报》 EI CSCD 北大核心 2006年第1期96-100,共5页
This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz condition... This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method. 展开更多
关键词 鲁棒控制 滑动模式 滤波器 离散系统 状态延迟 线性矩阵不等式
下载PDF
Design of fuzzy sliding mode controller for SISO discrete-time systems
8
作者 YangMI YuanweiJING 《控制理论与应用(英文版)》 EI 2004年第3期253-258,共6页
According to a class of nonlinear SISO discrete systems, the fiizzy sliding mode control problem is considered. Based on Takagi-Sugeno fuzzy model method, a fuzzy model is designed to describe the local dynamic perfor... According to a class of nonlinear SISO discrete systems, the fiizzy sliding mode control problem is considered. Based on Takagi-Sugeno fuzzy model method, a fuzzy model is designed to describe the local dynamic performance of the given nonlinear systems. By using the sliding mode control approach, the global controller is constructed by integrating all the local state controllers and the global supervisory sliding mode controller. The tracking problem can be easily dealt with by taking advantage of the combined controller,and the robustness performance is improved finally. A simulation example is given to show the effectiveness and feasibility of the method proposed. 展开更多
关键词 Fuzzy sliding mode controller Nonlinear discrete systems Takagi-Sugeno model
下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
9
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
10
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
下载PDF
Control method based on DRFNN sliding mode for multifunctional flexible multistate switch 被引量:1
11
作者 Jianghua Liao Wei Gao +1 位作者 Yan Yang Gengjie Yang 《Global Energy Interconnection》 EI CSCD 2024年第2期190-205,共16页
To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st... To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis. 展开更多
关键词 Distribution networks Flexible multistate switch Grounding fault arc suppression Double-loop recursive fuzzy neural network Quasi-continuous second-order sliding mode
下载PDF
Landslide distribution and sliding mode control along the Anninghe fault zone at the eastern edge of the Tibetan Plateau 被引量:5
12
作者 ZHOU Hong-fu LIU Bin +4 位作者 YE Fei FU Wen-xi TANG Wen-qing QIN Ya-dong FANG Tian 《Journal of Mountain Science》 SCIE CSCD 2021年第8期2094-2107,共14页
Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant inf... Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant influence on the formation of special geomorphology and the distribution of geological hazards at the eastern edge of the Tibetan Plateau.The Anninghe fault zone is a key part of the Y-shaped fault pattern in the Sichuan-Yunnan block of China.In this paper,high-resolution topographic data,multitemporal remote sensing images,numerical calculations,seismic records,and comprehensive field investigations were employed to study the landslide distribution along the active part of the Anninghe.The influence of active faults on the lithology,rock mass structures and slope stress fields were also studied.The results show that the faults within the Anninghe fault zone have damaged the structure and integrity of the slope rock mass,reduced the mechanical strength of the rock mass and controlled the slope failure modes.The faults have also controlled the stress field,the distribution of the plastic strain zone and the maximum shear strain zone of the slope,thus have promoted the formation and evolution of landslides.We find that the studied landslides are linearly distributed along the Anninghe fault zone,and more than 80%of these landslides are within 2–3 km of the fault rupture zone.Moreover,the Anninghe fault zone provides abundant substance for landslides or debris flows.This paper presents four types of sliding mode control of the Anninghe fault zone,e.g.,constituting the whole landslide body,controlling the lateral boundary of the landslide,controlling the crown of the landslide,and constituting the toe of the landslide.The results presented merit close attention as a valuable reference source for local infrastructure planning and engineering projects. 展开更多
关键词 Tibetan Plateau Anninghe fault zone Landslide distribution sliding mode control
下载PDF
A Novel Disturbance Observer Based Fixed-Time Sliding Mode Control for Robotic Manipulators With Global Fast Convergence
13
作者 Dan Zhang Jiabin Hu +2 位作者 Jun Cheng Zheng-Guang Wu Huaicheng Yan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期661-672,共12页
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th... This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance. 展开更多
关键词 Disturbance observer(DO) fixed-time non-singular sliding mode control robotic manipulator trajectory tracking
下载PDF
Design of integral sliding mode guidance law based on disturbance observer
14
作者 ZHOU Jianping ZHANG Wenjie +2 位作者 ZHOU Hang LI Qiang XIA Qunli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期186-194,共9页
With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even elimina... With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed. 展开更多
关键词 disturbance observer pilot dynamics integral sliding mode impact angle constraint maneuvering target
下载PDF
Asynchronous Learning-Based Output Feedback Sliding Mode Control for Semi-Markov Jump Systems: A Descriptor Approach
15
作者 Zheng Wu Yiyun Zhao +3 位作者 Fanbiao Li Tao Yang Yang Shi Weihua Gui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1358-1369,共12页
This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys... This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively. 展开更多
关键词 Asynchronous switching learning-based control output feedback semi-Markovian jump systems sliding mode con-trol(SMC).
下载PDF
Fixed-Time Sliding Mode Control With Varying Exponent Coefficient for Modular Reconfigurable Flight Arrays
16
作者 Jianquan Yang Chunxi Yang +1 位作者 Xiufeng Zhang Jing Na 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期514-528,共15页
The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular sy... The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies. 展开更多
关键词 Control allocation dynamic model fixed-time stabilization modular reconfigurable flight array(MRFA) sliding mode
下载PDF
Robust design of sliding mode control for airship trajectory tracking with uncertainty and disturbance estimation
17
作者 WASIM Muhammad ALI Ahsan +2 位作者 CHOUDHRY Mohammad Ahmad SHAIKH Inam Ul Hasan SALEEM Faisal 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期242-258,共17页
The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncer... The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances. 展开更多
关键词 AIRSHIP CHATTERING extended Kalman filter(EKF) model uncertainties estimation sliding mode controller(SMC)
下载PDF
Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking
18
作者 Chen AN Jiaxi ZHOU Kai WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期603-618,共16页
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl... This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies. 展开更多
关键词 aerial robot hierarchical control strategy model-free iterative sliding mode controller(MFISMC) trajectory tracking reinforcement learning
下载PDF
Control system design for a pressure-tube-type supercritical water-cooled nuclear reactor via a higher order sliding mode method
19
作者 M.Hajipour G.R.Ansarifar 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期145-154,共10页
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor... Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering. 展开更多
关键词 Supercritical water nuclear reactor Higher order sliding mode controller Steam temperature Steam pressure Point kinetics model
下载PDF
Enhanced Fuzzy Logic Control Model and Sliding Mode Based on Field Oriented Control of Induction Motor
20
作者 Alaa Tahhan Feyzullah Temurtaş 《World Journal of Engineering and Technology》 2024年第1期65-79,共15页
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo... In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology. 展开更多
关键词 Induction Motor Vector Control Fuzzy Logic Control sliding mode
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部