In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using th...In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.展开更多
In this paper,we investigate a two-dimensional avian influenza model with Allee effect and stochasticity.We first show that a unique global positive solution always exists to the stochastic system for any positive ini...In this paper,we investigate a two-dimensional avian influenza model with Allee effect and stochasticity.We first show that a unique global positive solution always exists to the stochastic system for any positive initial value.Then,under certain conditions,this solution is proved to be stochastically ultimately bounded.Furthermore,by constructing a suitable Lyapunov function,we obtain sufficient conditions for the existence of stationary distribution with ergodicity.The conditions for the extinction of infected avian population are also analytically studied.These theoretical results are conformed by computational simulations.We numerically show that the environmental noise can bring different dynamical outcomes to the stochastic model.By scanning different noise intensities,we observe that large noise can cause extinction of infected avian population,which suggests the repression of noise on the spread of avian virus.展开更多
文摘In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.
基金This study is supported by the National Key Research and Development Program of China(2018YFA0801103)the National Natural Science Foundation of China(Grant No.12071330 to Ling Yang,Grant No.11701405 to Jie Yan).
文摘In this paper,we investigate a two-dimensional avian influenza model with Allee effect and stochasticity.We first show that a unique global positive solution always exists to the stochastic system for any positive initial value.Then,under certain conditions,this solution is proved to be stochastically ultimately bounded.Furthermore,by constructing a suitable Lyapunov function,we obtain sufficient conditions for the existence of stationary distribution with ergodicity.The conditions for the extinction of infected avian population are also analytically studied.These theoretical results are conformed by computational simulations.We numerically show that the environmental noise can bring different dynamical outcomes to the stochastic model.By scanning different noise intensities,we observe that large noise can cause extinction of infected avian population,which suggests the repression of noise on the spread of avian virus.