Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out i...Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out in a drinking water plant. Results The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus) inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process. The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination. Conclusion This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.展开更多
The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon w...The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation(R 2=0.9562 and R 2=0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R 2=0.9782. In addition certain linear correlations between THMFP, HAAFP and UV 254 (R 2=0.855 and R 2=0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.展开更多
The high-active bacteria were screened from 8 dominant bacteria obtained from the natural water body,and then the bioaugmentation activated carbon was formed by hydraulic immobilization of the high-active bacteria. Pl...The high-active bacteria were screened from 8 dominant bacteria obtained from the natural water body,and then the bioaugmentation activated carbon was formed by hydraulic immobilization of the high-active bacteria. Plant-scale studies on removal characteristics of disinfection by-products formation potentials (DBPFP) by bioaugmentation activated carbon process were conducted for micro-polluted raw water treatment. The results show that the bioaugmentation activated carbon process has adopted better purification efficiency to THMFP and HAAFP than traditional biological activated carbon process,and that average removal efficiencies of THMFP and HAAFP can reach 35% and 39.7% during the test period,increasing by more than 10% compared with traditional biological activated carbon process. The removal efficiencies of THMFP and HAAFP are stable because of the biodegradation of the high-active bacteria and the adsorption of active carbon. The biodegradability of CHCl3 formation potential is better as compared with that of CHCl2Br and CHClBr2 formation potentials among THMFP,and high removal efficiency of CHCl3formation potential is obtained by bioaugmentation degradation of the high-active bacteria. The biodegradability of HAAFP is better in comparison with that of THMFP,and the chemical properties of HAAFP are propitious to adsorption of activated carbon. Thus,HAAFP is on predominance during the competitive removal process with THMFP.展开更多
Dissolved organic matter (DOM) has been identified as precursor for disinfection by-products (DBPs) formation during chlorination. Recently, it has been demonstrated that the characteristics of DOM influence the D...Dissolved organic matter (DOM) has been identified as precursor for disinfection by-products (DBPs) formation during chlorination. Recently, it has been demonstrated that the characteristics of DOM influence the DBPs formation mechanism. A study was, therefore, initiated to investigate the effects of DOM fractions on DBPs formation mechanism. In the chlorination process, organic acids are dominant precursors of total thihalomethanes (TTHM) because of the vc-o and unsaturated structures. Furthermore, the TTHM formation of organic acids was affected by pH more greatly. Based on the fluorescence spectroscopy analysis, DOM fractions contained several fluorescence substances. During chlorination, humic acid-like substances were found to exhibit high chlorine reactivity and hydrophobic organics decomposed to smaller molecules faster than hydrophilic organics even at lower chlorine dosages. Unlike hydrophobic fractions, hydrophilic organics showed no toxicity following chlorination, suggesting that the toxic structures in hydrophihc organics showed high chlorine reactivity during chlorination.展开更多
Objective To evaluate the disinfection of wastewater in China. Methods During the SARS epidemic occurred in Beijing, a study of different disinfection methods used in the main local wastewater plants including means o...Objective To evaluate the disinfection of wastewater in China. Methods During the SARS epidemic occurred in Beijing, a study of different disinfection methods used in the main local wastewater plants including means of chlorine, chlorine dioxide, ozone, and ultraviolet was carried out in our laboratory. The residual coliform, bacteria and trihalomethanes, haloacetic acids were determined after disinfection. Results Chlorine had fairly better efficiency on microorganism inactivation than chlorine dioxide with the same dosage. Formation of THMs and HAAs does not exceed the drinking water standard. UV irradiation had good efficiency on microorganism inactivation and good future of application in China. Organic material and ammonia nitrogen was found to be significant on inactivation and DBPs formation. Conclusion Chlorine disinfection seems to be the best available technology for coliform and bacteria inactivation. And it is of fairly low toxicological hazard due to the transformation of monochloramine.展开更多
Chlorination of pool water leads to the forma-tion of many by-products, chloroform usually being the most abundant. The paper reports the results of a study evaluating exposure of bath-ers and pool employees to trihal...Chlorination of pool water leads to the forma-tion of many by-products, chloroform usually being the most abundant. The paper reports the results of a study evaluating exposure of bath-ers and pool employees to trihalomethanes (chloroform, bromodichloromethane, dibromo-chloromethane, bromoform) in four indoor swimming pools with chlorinated water. Chlo-roform concentrations in environmental air samples when the pool was in use (about 9 h), in the range 1-182 μg/m3, were greater near the pool than in the change rooms, passageways and offices. Chloroform concentrations in per-sonal air samples of pool employees were in the range 18-138 μg/m3. Urinary concentrations of chloroform averaged (geometric means) 0.123 and 0.165 μg/l and 0.404 and 0.342 μg/l prior and at the end of exposure during in water and out of water activities, respectively. The significant increase in urinary excretion of chloroform confirms that the source of the contaminant was pool water. Absorption of chloroform, estimated from airborne and water concentrations, was significantly correlated with delta chloroform (after/before exposure) and urinary concentra-tions of chloroform at the end of exposure. As chloroform is a toxic and possibly carcinogenic substance, these observations pose a problem principally for the general population of pool users.展开更多
Disinfection is an indispensable water treatment process for killing harmful pathogens and protecting human health. However, the disinfection has caused significant public concern due to the formation of toxic disinfe...Disinfection is an indispensable water treatment process for killing harmful pathogens and protecting human health. However, the disinfection has caused significant public concern due to the formation of toxic disinfection by-products(DBPs). Lots of studies on disinfection and DBPs have been performed in the world since 1974. Although related studies in China started in1980 s, a great progress has been achieved during the last three decades. Therefore, this review summarized the main achievements on disinfection and DPBs studies in China, which included:(1) the occurrence of DBPs in water of China,(2) the identification and detection methods of DBPs,(3) the formation mechanisms of DBPs during disinfection process,(4) the toxicological effects and epidemiological surveys of DBPs,(5) the control and management countermeasures of DBPs in water disinfection, and(6) the challenges and chances of DBPs studies in future. It is expected that this review would provide useful information and reference for optimizing disinfection process, reducing DBPs formation and protecting human health.展开更多
The performance of an integrated process including coagulation, ozonation, ceramic ultrafiltration (UF) and biologic activated carbon (BAC) filtration was investigated for the removal of organic matter and disinfe...The performance of an integrated process including coagulation, ozonation, ceramic ultrafiltration (UF) and biologic activated carbon (BAC) filtration was investigated for the removal of organic matter and disinfection by-products (DBPs) precursors from micropolluted surface water. A pilot scale plant with the capacity of 120 m3 per day was set up and operated for the treatment of drinking water. Ceramic membranes were used with the filtration area of 50 m2 and a pore size of 60 nm. Dissolved organic matter was divided into five fractions including hydrophobic acid (HoA), base (HOB) and neutral (HoN), weakly hydrophobic acid (WHOA) and hydrophilic matter (HIM) by DAX-8 and XAD-4 resins. The experiment results showed that the removal of organic matter was significantly improved with ozonation in advance. In sum, the integrated process removed 73% of dissolved organic carbon (DOC), 87% of UV254, 77% of trihalomethane (THMs) precursors, 76% of haloacetic acid (HAAs) precursors, 83%of trichloracetic aldehyde (CH) precursor, 77% of dichloroaeetonitrile (DCAN) precursor, 51% of trichloroacetonitrile (TCAN) precursor, 96% of 1,1,1- trichloroacetone (TCP) precursor and 63% of trichloroni- tromethane (TCNM) precursor. Hydrophobic organic matter was converted into hydrophilic organic matter during ozonation/UF, while the organic matter with molecular weight of 1000-3000 Da was remarkably decreased and converted into lower molecular weight organic matter ranged from 200-500 Da. DOC had a close linear relationship with the formation potential of DBPs.展开更多
Disinfection of water for human use is essential to protect against microbial disease;however, disinfection also leads to formation of disinfection by-products(DBPs), some of which are of health concern. From a chem...Disinfection of water for human use is essential to protect against microbial disease;however, disinfection also leads to formation of disinfection by-products(DBPs), some of which are of health concern. From a chemical perspective, swimming pools are a complex matrix, with continual addition of a wide range of natural and anthropogenic chemicals via filling waters, disinfectant addition, pharmaceuticals and personal care products and human body excretions. Natural organic matter, trace amounts of DBPs and chlorine or chloramines may be introduced by the filling water, which is commonly disinfected distributed drinking water. Chlorine and/or bromine is continually introduced via the addition of chemical disinfectants to the pool. Human body excretions(sweat, urine and saliva) and pharmaceuticals and personal care products(sunscreens, cosmetics, hair products and lotions) are introduced by swimmers. High addition of disinfectant leads to a high formation of DBPs from reaction of some of the chemicals with the disinfectant.Swimming pool air is also of concern as volatile DBPs partition into the air above the pool.The presence of bromine leads to the formation of a wide range of bromo-and bromo/chloro-DBPs, and Br-DBPs are more toxic than their chlorinated analogues. This is particularly important for seawater-filled pools or pools using a bromine-based disinfectant.This review summarises chemical contaminants and DBPs in swimming pool waters, as well as in the air above pools. Factors that have been found to affect DBP formation in pools are discussed. The impact of the swimming pool environment on human health is reviewed.展开更多
Disinfection to protect human health occurs at drinking water and wastewater facilities through application of non-selective oxidants including chlorine. Oxidants also transform organic material and form disinfection ...Disinfection to protect human health occurs at drinking water and wastewater facilities through application of non-selective oxidants including chlorine. Oxidants also transform organic material and form disinfection by-products(DBPs), many of which are halogenated and cyto-and genotoxic. Only a handful of assays have been used to compare DBP toxicity,and researchers are unsure which DBP(s) drive the increased cancer risk associated with drinking chlorinated water. The most extensive data set employs an in vitro model cell,Chinese hamster ovary cells. Traditionally, most DBP research focuses on the threat to human health, but the effects on aquatic species exposed to DBPs in wastewater effluents remain ill defined. We present the developmental toxicity for 15 DBPs and a chlorinated wastewater to a model aquatic vertebrate, zebrafish. Mono-halogenated DBPs followed the in vivo toxicity rank order: acetamides 〉 acetic acids 〉 acetonitriles ~ nitrosamines, which agrees well with previously published mammalian in vitro data. Di-and tri-halogenated acetonitriles were more toxic than their mono-halogenated analogues, and bromine-and iodine-substituted DBPs tended to be more toxic than chlorinated analogues. No zebrafish development effects were observed after exposure to undiluted or non-concentrated,chlorinated wastewater. We find zebrafish development to be a viable in vivo alternative or confirmatory assay to mammalian in vitro cell assays.展开更多
The presence of iodinated X-ray contrast media(ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products(DBPs). The objective of this st...The presence of iodinated X-ray contrast media(ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products(DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron,OH were treated with five different ICMs, including iopamidol, iopromide, iohexol,diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs(iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water.展开更多
Swimming has become a popular exercising and recreational activity in China but little is known about the disinfection by-products (DBPs) concentration levels in the pools. This study was conducted as a survey of th...Swimming has become a popular exercising and recreational activity in China but little is known about the disinfection by-products (DBPs) concentration levels in the pools. This study was conducted as a survey of the DBPs in China swimming pools, and to establish the correlations between the DBP concentrations and the pool water quality parameters. A total of 14 public indoor and outdoor pools in Beijing were included in the survey. Results showed that the median concentrations for total tfihalomethanes (TTHM), nine haloacetic acids (HAA9), chloral hydrate (CH), four haloacetonitriles (HAN4), 1,1- dichloropropanone, 1,1,1-trichloropropanone and trichlor- onitromethane were 33.8, 109.1, 30.1, 3.2, 0.3, 0.6 pg'L-1 and below detection limit, respectively. The TTHM and HAA9 levels were in the same magnitude of that in many regions of the world. The levels of CH and nitrogenous DBPs were greatly higher than and were comparable to that in typical drinking water, respectively. Disinfection by chlorine dioxide or trichloroisocyanuric acid could sub- stantially lower the DBP levels. The outdoor pools had higher TTHM and HAA9 levels, but lower trihaloacetic acids (THAA) levels than the indoor pools. The TTHM and HAA9 concentrations could be moderately correlated with the free chlorine and total chlorine residuals but not with the total organic carbon (TOC) contents. When the DBP concentration levels from other survey studies were also included for statistical analysis, a good correlation could be established between the TTHM levels and the TOC concentration. The influence of chlorine residual on DBP levels could also be significant.展开更多
Disinfection by-products occur widely as the unintended effect of water disinfection and are associated with toxicity and adverse human health effects. Yet the molecular mechanisms of their toxicity are not well under...Disinfection by-products occur widely as the unintended effect of water disinfection and are associated with toxicity and adverse human health effects. Yet the molecular mechanisms of their toxicity are not well understood. To investigate the molecular basis of hyperploidy induction by monohaloacetonitriles, the interaction of monohaloacetonitriles with topoisomerase Ⅱ in Chinese hamster ovary cells was examined. We showed a concentration-dependent inhibition of DNA decatenation activity of topoisomerase under acellular conditions while in vitro monohaloacetonitrile treatment expressed mixed results. The working hypothesis, that topoisomerase Ⅱ is a molecular target of monohaloacetonitriles, was only partially supported.Nevertheless, this research serves as a starting point toward molecular mechanisms of toxic action of monohaloacetonitriles.展开更多
The formation and concentration of disinfection by-products(DBPs) in pool water and the ambient air vary according to the type of water treatment process used. This exploratory study was aimed at investigating the s...The formation and concentration of disinfection by-products(DBPs) in pool water and the ambient air vary according to the type of water treatment process used. This exploratory study was aimed at investigating the short-term impact of modifications of the water treatment process on traditional DBP levels(e.g., trihalomethanes(THMs), chloramines) and emerging DBPs(e.g., Halonitromethanes, Haloketones, NDMA) in swimming pool water and/or air. A sampling program was carried to understand the impact of the following changes made successively to the standard water treatment process: activation of ultraviolet(UV)photoreactor, halt of air stripping with continuation of air extraction from the buffer tank,halt of air stripping and suppression of air extraction from the buffer tank, suppression of the polyaluminium silicate sulfate(PASS) coagulant. UV caused a high increase of Halonitromethanes(8.4 fold), Haloketones(2.1 fold), and THMs in the water(1.7 fold) and, of THMs in the air(1.6 fold) and contributed to reducing the level of chloramines in the air(1.6fold) and NDMA in the water(2.1 fold). The results highlight the positive impact of air stripping in reducing volatile contaminants. The PASS did not change the presence of DBPs, except for the THMs, which decrease slightly with the use of this coagulant. This study shows that modifications affecting the water treatment process can rapidly produce important and variable impacts on DBP levels in water and air and suggests that implementation of any water treatment process to reduce DBP levels should take into account the specific context of each swimming pool.展开更多
Environmental water samples can be extremely complex,with potentially thousands of molecules that can derive from natural organic matter(NOM)and thousands that derive from anthropogenic contaminants.As complex as th...Environmental water samples can be extremely complex,with potentially thousands of molecules that can derive from natural organic matter(NOM)and thousands that derive from anthropogenic contaminants.As complex as these samples are,drinking water can be even more complex.Due to disinfectants that are used to treat drinking water(e.g.,chlorine,chloramines,展开更多
This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (S...This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes, i.e., coagulation, sedimentation, and filtration were employed. Twenty DBPs, including four trihalomethanes, nine haloacetic acids, seven N-DBPs (dichloroacetamide, trichloroacetamide, dichloroacetonitrile, trichloroacetonitrile, bromochloroace- tonitrile, dibromoacetonitrile and trichloronitromethane), and eight volatile chlorinated compounds (dichloromethane (DCM), 1,2-dichloroethane, tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4- trichlorobenzene) were detected in the two WTPs. The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 ~tg/L detected vs. 20 μg/L MCL). The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP, probably because more precursors (e.g., dissolved organic carbon, dissolved organic nitrogen) were present in the water source of the SWTE展开更多
The characteristics of dissolved organic matter(DOM) and bromide ion concentration have a significant influence on the formation of disinfection by-products(DBPs). In order to identify the main DBP precursors, DOM...The characteristics of dissolved organic matter(DOM) and bromide ion concentration have a significant influence on the formation of disinfection by-products(DBPs). In order to identify the main DBP precursors, DOM was divided into five fractions based on molecular weight(MW), trihalomethane formation potential and haloacetic acid formation potential were determined for fractions, and the change in contents of different fractions and total DBPs during treatment processes(pre-chlorination, coagulation, sand filtration,disinfection) were studied. Moreover, the relationship between bromide concentration and DBP generation characteristics in processes was also analyzed. The results showed that the main DBP precursors were the fraction with MW 1 k Da and fraction with MW 3-10 k Da, and the DBP's generation ability of lower molecular weight DOM( 10 k Da) was higher than that of higher molecular weight DOM. During different processes,pre-chlorination and disinfection had limited effect on removing organics but could alter the MW distribution, and coagulation and filtration could effectively remove organics with higher MW. For DBPs, trihalomethanes(THMs) were mainly generated in pre-chlorination and disinfection, while haloacetic acids(HAAs) were mostly generated during pre-chlorination; coagulation and sand filtration had little effect on THMs but resulted in a slight removal of HAAs. In addition, the results of ANOVA tests suggested that molecular sizes and treatment processes have significant influence on DBP formation. With increasing bromide concentration, the brominated DBPs significantly increased, but the bromine incorporation factor in the processes was basically consistent at each concentration.展开更多
Earthworms promises to provide cheaper solutions to several social, economic and environmental problems plaguing the human society. Earthworms can safely manage all municipal and industrial organic wastes including se...Earthworms promises to provide cheaper solutions to several social, economic and environmental problems plaguing the human society. Earthworms can safely manage all municipal and industrial organic wastes including sewage sludge and divert them from ending up in the landfills. Their body work as a ‘biofilter’ and they can ‘purify’ and also ‘disinfect’ and ‘detoxify’ municipal and several industrial wastewater. They reduce the BOD & COD loads and the TDSS of wastewater significantly. They can even remove the EDCs (endocrine disrupting chemicals) from sewage which is not removed by the conventional sewage treatments plants. Earthworms can bio-accumulate and bio-transform many chemical contaminants including heavy metals and organic pollutants in soil and clean-up the contaminated lands for re-development. Earthworms restore & improve soil fertility by their secretions (growth hormones) and excreta (vermicast with beneficial soil microbes) & boost ‘crop productivity’. They have potential to replace the environmentally destructive chemical fertilizers from farm production. The ‘protein rich’ earthworm biomass is being used for production of ‘nutritive feed materials’ for fishery, dairy & poultry industries. They are also being used as ‘raw materials’ for rubber, lubricant and detergent industries. The bioactive compounds isolated from earthworms are finding new uses in production of ‘life saving medicines’ for cardiovascular diseases and cancer cure.展开更多
Disinfection by-products (DBPs) in drinking water have caused worldwide concern due to their potential carcinogenic effects. The formation of phenazine from diphenylamine (DPhA) chloramination was studied and its ...Disinfection by-products (DBPs) in drinking water have caused worldwide concern due to their potential carcinogenic effects. The formation of phenazine from diphenylamine (DPhA) chloramination was studied and its cytotoxicities for two human cancer cells were also investigated. Phenazine was detected synchronously with the consumption of DPhA by chloramination, which further confirmed that the new DBP phenazine can be produced along with N-nitrosodiphenylamine (NDPhA) from DPhA chloramination. The formation of phenazine had a maximum molar yield with solution pH increasing from 5.0 to 9.0, with phenazine as the main product for DPhA chloramination at lower pH, but higher pH favored the formation of NDPhA. Thus, solution pH is the key factor in controlling the formation of phenazine and NDPhA. Both the initial DPhA and chloramine concentrations did not show a significant effect on the molar yields of phenazine, although increasing the chloramine concentration could speed up the reaction rate of DPhA with chloramines. The cytotoxicity assays showed that phenazine had significant cell-specific toxicity towards T24 (bladder cancer cell lines) and HepG2 (hepatic tumor cell lines) cells with IC50 values of 0.50 and 2.04 mmol/L, respectively, and T24 cells being more sensitive to phenazine than HepG2 cells. The ICs0 values of phenazine, DPhA, and NDPhA for T24 cells were of the same order of magnitude and the cytotoxicity of phenazine for T24 cells was slightly lower than that of NDPhA (IC50, 0.16 mmol/L), suggesting that phenazine in drinking water may have an adverse effect on human health.展开更多
In the 1980 s, a case–control epidemiologic study was conducted in Iowa(USA) to analyze the association between exposure to disinfection by-products(DBPs) and bladder cancer risk. Trihalomethanes(THMs), the mos...In the 1980 s, a case–control epidemiologic study was conducted in Iowa(USA) to analyze the association between exposure to disinfection by-products(DBPs) and bladder cancer risk. Trihalomethanes(THMs), the most commonly measured and dominant class of DBPs in drinking water, served as a primary metric and surrogate for the full DBP mixture.Average THM exposure was calculated, based on rough estimates of past levels in Iowa. To reduce misclassification, a follow-up study was undertaken to improve estimates of past THM levels and to re-evaluate their association with cancer risk. In addition, the risk associated with haloacetic acids, another class of DBPs, was examined. In the original analysis, surface water treatment plants were assigned one of two possible THM levels depending on the point of chlorination. The re-assessment considered each utility treating surface or groundwater on a case-by-case basis. Multiple treatment/disinfection scenarios and water quality parameters were considered with actual DBP measurements to develop estimates of past levels. The highest annual average THM level in the re-analysis was156 μg/L compared to 74 μg/L for the original analysis. This allowed the analysis of subjects exposed at higher levels(〉 96 μg/L). The re-analysis established a new approach, based on case studies and an understanding of the water quality and operational parameters that impact DBP formation, for determining historical exposure.展开更多
基金This work was sponsored by National Natural Science Fundation Committee (No. 50238020).
文摘Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out in a drinking water plant. Results The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus) inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process. The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination. Conclusion This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.
文摘The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation(R 2=0.9562 and R 2=0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R 2=0.9782. In addition certain linear correlations between THMFP, HAAFP and UV 254 (R 2=0.855 and R 2=0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.
基金Sponsered by the National Natural Science Foundation of China (Grant No. 50678046)
文摘The high-active bacteria were screened from 8 dominant bacteria obtained from the natural water body,and then the bioaugmentation activated carbon was formed by hydraulic immobilization of the high-active bacteria. Plant-scale studies on removal characteristics of disinfection by-products formation potentials (DBPFP) by bioaugmentation activated carbon process were conducted for micro-polluted raw water treatment. The results show that the bioaugmentation activated carbon process has adopted better purification efficiency to THMFP and HAAFP than traditional biological activated carbon process,and that average removal efficiencies of THMFP and HAAFP can reach 35% and 39.7% during the test period,increasing by more than 10% compared with traditional biological activated carbon process. The removal efficiencies of THMFP and HAAFP are stable because of the biodegradation of the high-active bacteria and the adsorption of active carbon. The biodegradability of CHCl3 formation potential is better as compared with that of CHCl2Br and CHClBr2 formation potentials among THMFP,and high removal efficiency of CHCl3formation potential is obtained by bioaugmentation degradation of the high-active bacteria. The biodegradability of HAAFP is better in comparison with that of THMFP,and the chemical properties of HAAFP are propitious to adsorption of activated carbon. Thus,HAAFP is on predominance during the competitive removal process with THMFP.
基金supported by the National Natural Science Foundation of China (No. 50538090)the Funds for Creative Research Groups of China (No. 50621804)the High-Tech Research and Development Program (863) of China (No. 2007AA06Z338).
文摘Dissolved organic matter (DOM) has been identified as precursor for disinfection by-products (DBPs) formation during chlorination. Recently, it has been demonstrated that the characteristics of DOM influence the DBPs formation mechanism. A study was, therefore, initiated to investigate the effects of DOM fractions on DBPs formation mechanism. In the chlorination process, organic acids are dominant precursors of total thihalomethanes (TTHM) because of the vc-o and unsaturated structures. Furthermore, the TTHM formation of organic acids was affected by pH more greatly. Based on the fluorescence spectroscopy analysis, DOM fractions contained several fluorescence substances. During chlorination, humic acid-like substances were found to exhibit high chlorine reactivity and hydrophobic organics decomposed to smaller molecules faster than hydrophilic organics even at lower chlorine dosages. Unlike hydrophobic fractions, hydrophilic organics showed no toxicity following chlorination, suggesting that the toxic structures in hydrophihc organics showed high chlorine reactivity during chlorination.
文摘Objective To evaluate the disinfection of wastewater in China. Methods During the SARS epidemic occurred in Beijing, a study of different disinfection methods used in the main local wastewater plants including means of chlorine, chlorine dioxide, ozone, and ultraviolet was carried out in our laboratory. The residual coliform, bacteria and trihalomethanes, haloacetic acids were determined after disinfection. Results Chlorine had fairly better efficiency on microorganism inactivation than chlorine dioxide with the same dosage. Formation of THMs and HAAs does not exceed the drinking water standard. UV irradiation had good efficiency on microorganism inactivation and good future of application in China. Organic material and ammonia nitrogen was found to be significant on inactivation and DBPs formation. Conclusion Chlorine disinfection seems to be the best available technology for coliform and bacteria inactivation. And it is of fairly low toxicological hazard due to the transformation of monochloramine.
文摘Chlorination of pool water leads to the forma-tion of many by-products, chloroform usually being the most abundant. The paper reports the results of a study evaluating exposure of bath-ers and pool employees to trihalomethanes (chloroform, bromodichloromethane, dibromo-chloromethane, bromoform) in four indoor swimming pools with chlorinated water. Chlo-roform concentrations in environmental air samples when the pool was in use (about 9 h), in the range 1-182 μg/m3, were greater near the pool than in the change rooms, passageways and offices. Chloroform concentrations in per-sonal air samples of pool employees were in the range 18-138 μg/m3. Urinary concentrations of chloroform averaged (geometric means) 0.123 and 0.165 μg/l and 0.404 and 0.342 μg/l prior and at the end of exposure during in water and out of water activities, respectively. The significant increase in urinary excretion of chloroform confirms that the source of the contaminant was pool water. Absorption of chloroform, estimated from airborne and water concentrations, was significantly correlated with delta chloroform (after/before exposure) and urinary concentra-tions of chloroform at the end of exposure. As chloroform is a toxic and possibly carcinogenic substance, these observations pose a problem principally for the general population of pool users.
基金financially supported by the National Key R&D Program of China(2016YFE0118800)National Natural Science Foundation of China(Nos.21577154,21590814 and 21621064)
文摘Disinfection is an indispensable water treatment process for killing harmful pathogens and protecting human health. However, the disinfection has caused significant public concern due to the formation of toxic disinfection by-products(DBPs). Lots of studies on disinfection and DBPs have been performed in the world since 1974. Although related studies in China started in1980 s, a great progress has been achieved during the last three decades. Therefore, this review summarized the main achievements on disinfection and DPBs studies in China, which included:(1) the occurrence of DBPs in water of China,(2) the identification and detection methods of DBPs,(3) the formation mechanisms of DBPs during disinfection process,(4) the toxicological effects and epidemiological surveys of DBPs,(5) the control and management countermeasures of DBPs in water disinfection, and(6) the challenges and chances of DBPs studies in future. It is expected that this review would provide useful information and reference for optimizing disinfection process, reducing DBPs formation and protecting human health.
文摘The performance of an integrated process including coagulation, ozonation, ceramic ultrafiltration (UF) and biologic activated carbon (BAC) filtration was investigated for the removal of organic matter and disinfection by-products (DBPs) precursors from micropolluted surface water. A pilot scale plant with the capacity of 120 m3 per day was set up and operated for the treatment of drinking water. Ceramic membranes were used with the filtration area of 50 m2 and a pore size of 60 nm. Dissolved organic matter was divided into five fractions including hydrophobic acid (HoA), base (HOB) and neutral (HoN), weakly hydrophobic acid (WHOA) and hydrophilic matter (HIM) by DAX-8 and XAD-4 resins. The experiment results showed that the removal of organic matter was significantly improved with ozonation in advance. In sum, the integrated process removed 73% of dissolved organic carbon (DOC), 87% of UV254, 77% of trihalomethane (THMs) precursors, 76% of haloacetic acid (HAAs) precursors, 83%of trichloracetic aldehyde (CH) precursor, 77% of dichloroaeetonitrile (DCAN) precursor, 51% of trichloroacetonitrile (TCAN) precursor, 96% of 1,1,1- trichloroacetone (TCP) precursor and 63% of trichloroni- tromethane (TCNM) precursor. Hydrophobic organic matter was converted into hydrophilic organic matter during ozonation/UF, while the organic matter with molecular weight of 1000-3000 Da was remarkably decreased and converted into lower molecular weight organic matter ranged from 200-500 Da. DOC had a close linear relationship with the formation potential of DBPs.
基金Curtin University for an Australian Postgraduate AwardWater Research Australia and Chem Centre (Western Australia) for a PhD Top Up Scholarship
文摘Disinfection of water for human use is essential to protect against microbial disease;however, disinfection also leads to formation of disinfection by-products(DBPs), some of which are of health concern. From a chemical perspective, swimming pools are a complex matrix, with continual addition of a wide range of natural and anthropogenic chemicals via filling waters, disinfectant addition, pharmaceuticals and personal care products and human body excretions. Natural organic matter, trace amounts of DBPs and chlorine or chloramines may be introduced by the filling water, which is commonly disinfected distributed drinking water. Chlorine and/or bromine is continually introduced via the addition of chemical disinfectants to the pool. Human body excretions(sweat, urine and saliva) and pharmaceuticals and personal care products(sunscreens, cosmetics, hair products and lotions) are introduced by swimmers. High addition of disinfectant leads to a high formation of DBPs from reaction of some of the chemicals with the disinfectant.Swimming pool air is also of concern as volatile DBPs partition into the air above the pool.The presence of bromine leads to the formation of a wide range of bromo-and bromo/chloro-DBPs, and Br-DBPs are more toxic than their chlorinated analogues. This is particularly important for seawater-filled pools or pools using a bromine-based disinfectant.This review summarises chemical contaminants and DBPs in swimming pool waters, as well as in the air above pools. Factors that have been found to affect DBP formation in pools are discussed. The impact of the swimming pool environment on human health is reviewed.
基金provided by the US Environmental Protection Agency through the STAR program (RD83558001)provided by the American Water Works Association Abel Wolman Fellowshipthe Water Environment Federation Canham Studies Scholarship
文摘Disinfection to protect human health occurs at drinking water and wastewater facilities through application of non-selective oxidants including chlorine. Oxidants also transform organic material and form disinfection by-products(DBPs), many of which are halogenated and cyto-and genotoxic. Only a handful of assays have been used to compare DBP toxicity,and researchers are unsure which DBP(s) drive the increased cancer risk associated with drinking chlorinated water. The most extensive data set employs an in vitro model cell,Chinese hamster ovary cells. Traditionally, most DBP research focuses on the threat to human health, but the effects on aquatic species exposed to DBPs in wastewater effluents remain ill defined. We present the developmental toxicity for 15 DBPs and a chlorinated wastewater to a model aquatic vertebrate, zebrafish. Mono-halogenated DBPs followed the in vivo toxicity rank order: acetamides 〉 acetic acids 〉 acetonitriles ~ nitrosamines, which agrees well with previously published mammalian in vitro data. Di-and tri-halogenated acetonitriles were more toxic than their mono-halogenated analogues, and bromine-and iodine-substituted DBPs tended to be more toxic than chlorinated analogues. No zebrafish development effects were observed after exposure to undiluted or non-concentrated,chlorinated wastewater. We find zebrafish development to be a viable in vivo alternative or confirmatory assay to mammalian in vitro cell assays.
基金supported by grant numbers NSF1124865 (SDR and SED)NSF1124844 (MJP)+1 种基金NIH T32 ES 007326 (CHJ)NIH T32 ES 007015 (CHJ)
文摘The presence of iodinated X-ray contrast media(ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products(DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron,OH were treated with five different ICMs, including iopamidol, iopromide, iohexol,diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs(iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water.
文摘Swimming has become a popular exercising and recreational activity in China but little is known about the disinfection by-products (DBPs) concentration levels in the pools. This study was conducted as a survey of the DBPs in China swimming pools, and to establish the correlations between the DBP concentrations and the pool water quality parameters. A total of 14 public indoor and outdoor pools in Beijing were included in the survey. Results showed that the median concentrations for total tfihalomethanes (TTHM), nine haloacetic acids (HAA9), chloral hydrate (CH), four haloacetonitriles (HAN4), 1,1- dichloropropanone, 1,1,1-trichloropropanone and trichlor- onitromethane were 33.8, 109.1, 30.1, 3.2, 0.3, 0.6 pg'L-1 and below detection limit, respectively. The TTHM and HAA9 levels were in the same magnitude of that in many regions of the world. The levels of CH and nitrogenous DBPs were greatly higher than and were comparable to that in typical drinking water, respectively. Disinfection by chlorine dioxide or trichloroisocyanuric acid could sub- stantially lower the DBP levels. The outdoor pools had higher TTHM and HAA9 levels, but lower trihaloacetic acids (THAA) levels than the indoor pools. The TTHM and HAA9 concentrations could be moderately correlated with the free chlorine and total chlorine residuals but not with the total organic carbon (TOC) contents. When the DBP concentration levels from other survey studies were also included for statistical analysis, a good correlation could be established between the TTHM levels and the TOC concentration. The influence of chlorine residual on DBP levels could also be significant.
基金supported by NSF STC Water CAMPWS (Award CTS-0120978)the U.S.EPA STAR Grant R834867funded in part by the U.S.Environmental Protection Agency's STAR program
文摘Disinfection by-products occur widely as the unintended effect of water disinfection and are associated with toxicity and adverse human health effects. Yet the molecular mechanisms of their toxicity are not well understood. To investigate the molecular basis of hyperploidy induction by monohaloacetonitriles, the interaction of monohaloacetonitriles with topoisomerase Ⅱ in Chinese hamster ovary cells was examined. We showed a concentration-dependent inhibition of DNA decatenation activity of topoisomerase under acellular conditions while in vitro monohaloacetonitrile treatment expressed mixed results. The working hypothesis, that topoisomerase Ⅱ is a molecular target of monohaloacetonitriles, was only partially supported.Nevertheless, this research serves as a starting point toward molecular mechanisms of toxic action of monohaloacetonitriles.
基金supported through a research fund provided by the Institut de Recherche Robert-Sauvé en Santé et Sécurité du Travail (IRSST), Québec, Canada
文摘The formation and concentration of disinfection by-products(DBPs) in pool water and the ambient air vary according to the type of water treatment process used. This exploratory study was aimed at investigating the short-term impact of modifications of the water treatment process on traditional DBP levels(e.g., trihalomethanes(THMs), chloramines) and emerging DBPs(e.g., Halonitromethanes, Haloketones, NDMA) in swimming pool water and/or air. A sampling program was carried to understand the impact of the following changes made successively to the standard water treatment process: activation of ultraviolet(UV)photoreactor, halt of air stripping with continuation of air extraction from the buffer tank,halt of air stripping and suppression of air extraction from the buffer tank, suppression of the polyaluminium silicate sulfate(PASS) coagulant. UV caused a high increase of Halonitromethanes(8.4 fold), Haloketones(2.1 fold), and THMs in the water(1.7 fold) and, of THMs in the air(1.6 fold) and contributed to reducing the level of chloramines in the air(1.6fold) and NDMA in the water(2.1 fold). The results highlight the positive impact of air stripping in reducing volatile contaminants. The PASS did not change the presence of DBPs, except for the THMs, which decrease slightly with the use of this coagulant. This study shows that modifications affecting the water treatment process can rapidly produce important and variable impacts on DBP levels in water and air and suggests that implementation of any water treatment process to reduce DBP levels should take into account the specific context of each swimming pool.
文摘Environmental water samples can be extremely complex,with potentially thousands of molecules that can derive from natural organic matter(NOM)and thousands that derive from anthropogenic contaminants.As complex as these samples are,drinking water can be even more complex.Due to disinfectants that are used to treat drinking water(e.g.,chlorine,chloramines,
基金supported by the National Major Science and Technology Project on Water Pollution Control and Management of China (No. 2009ZX07424-003)the National Natural Science Foundation of China (No.51108327)the State Key Laboratory of Pollution Control and Resource Reuse Foundation (No. PCRRY11015)
文摘This work investigated the formation of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes, i.e., coagulation, sedimentation, and filtration were employed. Twenty DBPs, including four trihalomethanes, nine haloacetic acids, seven N-DBPs (dichloroacetamide, trichloroacetamide, dichloroacetonitrile, trichloroacetonitrile, bromochloroace- tonitrile, dibromoacetonitrile and trichloronitromethane), and eight volatile chlorinated compounds (dichloromethane (DCM), 1,2-dichloroethane, tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4- trichlorobenzene) were detected in the two WTPs. The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 ~tg/L detected vs. 20 μg/L MCL). The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP, probably because more precursors (e.g., dissolved organic carbon, dissolved organic nitrogen) were present in the water source of the SWTE
基金supported by the National Key Research and Development Program of China (No. 2016YFC0401108)
文摘The characteristics of dissolved organic matter(DOM) and bromide ion concentration have a significant influence on the formation of disinfection by-products(DBPs). In order to identify the main DBP precursors, DOM was divided into five fractions based on molecular weight(MW), trihalomethane formation potential and haloacetic acid formation potential were determined for fractions, and the change in contents of different fractions and total DBPs during treatment processes(pre-chlorination, coagulation, sand filtration,disinfection) were studied. Moreover, the relationship between bromide concentration and DBP generation characteristics in processes was also analyzed. The results showed that the main DBP precursors were the fraction with MW 1 k Da and fraction with MW 3-10 k Da, and the DBP's generation ability of lower molecular weight DOM( 10 k Da) was higher than that of higher molecular weight DOM. During different processes,pre-chlorination and disinfection had limited effect on removing organics but could alter the MW distribution, and coagulation and filtration could effectively remove organics with higher MW. For DBPs, trihalomethanes(THMs) were mainly generated in pre-chlorination and disinfection, while haloacetic acids(HAAs) were mostly generated during pre-chlorination; coagulation and sand filtration had little effect on THMs but resulted in a slight removal of HAAs. In addition, the results of ANOVA tests suggested that molecular sizes and treatment processes have significant influence on DBP formation. With increasing bromide concentration, the brominated DBPs significantly increased, but the bromine incorporation factor in the processes was basically consistent at each concentration.
文摘Earthworms promises to provide cheaper solutions to several social, economic and environmental problems plaguing the human society. Earthworms can safely manage all municipal and industrial organic wastes including sewage sludge and divert them from ending up in the landfills. Their body work as a ‘biofilter’ and they can ‘purify’ and also ‘disinfect’ and ‘detoxify’ municipal and several industrial wastewater. They reduce the BOD & COD loads and the TDSS of wastewater significantly. They can even remove the EDCs (endocrine disrupting chemicals) from sewage which is not removed by the conventional sewage treatments plants. Earthworms can bio-accumulate and bio-transform many chemical contaminants including heavy metals and organic pollutants in soil and clean-up the contaminated lands for re-development. Earthworms restore & improve soil fertility by their secretions (growth hormones) and excreta (vermicast with beneficial soil microbes) & boost ‘crop productivity’. They have potential to replace the environmentally destructive chemical fertilizers from farm production. The ‘protein rich’ earthworm biomass is being used for production of ‘nutritive feed materials’ for fishery, dairy & poultry industries. They are also being used as ‘raw materials’ for rubber, lubricant and detergent industries. The bioactive compounds isolated from earthworms are finding new uses in production of ‘life saving medicines’ for cardiovascular diseases and cancer cure.
基金supported by the National Natural Science Foundation of China (No. 20977079)the Key Innovation Team for Science and Technology of Zhejiang Province(No. 2009R50047)+1 种基金the Major Science and Technology Program for Water Pollution Control and Treatment (No.2008ZX07421-001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘Disinfection by-products (DBPs) in drinking water have caused worldwide concern due to their potential carcinogenic effects. The formation of phenazine from diphenylamine (DPhA) chloramination was studied and its cytotoxicities for two human cancer cells were also investigated. Phenazine was detected synchronously with the consumption of DPhA by chloramination, which further confirmed that the new DBP phenazine can be produced along with N-nitrosodiphenylamine (NDPhA) from DPhA chloramination. The formation of phenazine had a maximum molar yield with solution pH increasing from 5.0 to 9.0, with phenazine as the main product for DPhA chloramination at lower pH, but higher pH favored the formation of NDPhA. Thus, solution pH is the key factor in controlling the formation of phenazine and NDPhA. Both the initial DPhA and chloramine concentrations did not show a significant effect on the molar yields of phenazine, although increasing the chloramine concentration could speed up the reaction rate of DPhA with chloramines. The cytotoxicity assays showed that phenazine had significant cell-specific toxicity towards T24 (bladder cancer cell lines) and HepG2 (hepatic tumor cell lines) cells with IC50 values of 0.50 and 2.04 mmol/L, respectively, and T24 cells being more sensitive to phenazine than HepG2 cells. The ICs0 values of phenazine, DPhA, and NDPhA for T24 cells were of the same order of magnitude and the cytotoxicity of phenazine for T24 cells was slightly lower than that of NDPhA (IC50, 0.16 mmol/L), suggesting that phenazine in drinking water may have an adverse effect on human health.
基金the Water Research Foundationthe U.S.Environmental Protection Agency (USEPA)the Division of Cancer Epidemiology and Genetics of the National Cancer Institute (NCI) and CHEEC for their support of the Iowa epidemiologic study
文摘In the 1980 s, a case–control epidemiologic study was conducted in Iowa(USA) to analyze the association between exposure to disinfection by-products(DBPs) and bladder cancer risk. Trihalomethanes(THMs), the most commonly measured and dominant class of DBPs in drinking water, served as a primary metric and surrogate for the full DBP mixture.Average THM exposure was calculated, based on rough estimates of past levels in Iowa. To reduce misclassification, a follow-up study was undertaken to improve estimates of past THM levels and to re-evaluate their association with cancer risk. In addition, the risk associated with haloacetic acids, another class of DBPs, was examined. In the original analysis, surface water treatment plants were assigned one of two possible THM levels depending on the point of chlorination. The re-assessment considered each utility treating surface or groundwater on a case-by-case basis. Multiple treatment/disinfection scenarios and water quality parameters were considered with actual DBP measurements to develop estimates of past levels. The highest annual average THM level in the re-analysis was156 μg/L compared to 74 μg/L for the original analysis. This allowed the analysis of subjects exposed at higher levels(〉 96 μg/L). The re-analysis established a new approach, based on case studies and an understanding of the water quality and operational parameters that impact DBP formation, for determining historical exposure.