期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Disinfection Byproducts and Their Precursors in Drinking Water Sources:Origins,Influencing Factors,and Environmental Insights
1
作者 Rong Xiao Yang Deng +1 位作者 Zuxin Xu Wenhai Chu 《Engineering》 SCIE EI CAS CSCD 2024年第5期36-50,共15页
Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as ... Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as they tend to be laborious,time-consuming,or technically difficult.Disinfection byproducts(DBPs)are a family of well-known secondary pollutants formed by the reactions of chemical disinfectants with DBP precursors during water disinfection treatment.Since DBP precursors have various origins(e.g.,natural,domestic,industrial,and agricultural sources),and since the formation of DBPs from different precursors in the presence of specific disinfectants is distinctive,we argue that DBPs and DBP precursors can serve as alternative indicators to assess the contamination in water sources and identify pollution origins.After providing a retrospective of the origins of DBPs and DBP precursors,as well as the specific formation patterns of DBPs from different precursors,this article presents an overview of the impacts of various natural and anthropogenic factors on DBPs and DBP precursors in drinking water sources.In practice,the DBPs(i.e.,their concentration and speciation)originally present in source water and the DBP precursors determined using DBP formation potential tests—in which water samples are dosed with a stoichiometric excess of specific disinfectants in order to maximize DBP formation under certain reaction conditions—can be considered as alternative metrics.When jointly used with other water quality parameters(e.g.,dissolved organic carbon,dissolved organic nitrogen,fluorescence,and molecular weight distribution)and specific contaminants of emerging concern(e.g.,certain pharmaceuticals and personal care products),DBPs and DBP precursors in drinking water sources can provide a more comprehensive picture of water pollution for better managing water resources and ensuring human health. 展开更多
关键词 disinfection byproducts disinfection byproduct precursors Drinking water sources Contamination indicator Natural factors Human factors
下载PDF
A review on treatment of disinfection byproduct precursors by biological activated carbon process
2
作者 Jie Fu Ching-Hua Huang +1 位作者 Chenyuan Dang Qilin Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第10期4495-4504,共10页
Disinfection by-products(DBPs)in water systems have attracted increasing attention due to their toxic effects.Removal of precursors(mainly natural organic matter(NOM))prior to the disinfection process has been recogni... Disinfection by-products(DBPs)in water systems have attracted increasing attention due to their toxic effects.Removal of precursors(mainly natural organic matter(NOM))prior to the disinfection process has been recognized as the ideal strategy to control the DBP levels.Currently,biological activated carbon(BAC)process is a highly recommended and prevalent process for treatment of DBP precursors in advanced water treatment.This paper first introduces the fundamental knowledge of BAC process,including the history,basic principles,typical process flow,and basic operational parameters.Then,the selection of BAC process for treatment of DBP precursors is explained in detail based on the comparative analysis of dominant water treatment technologies from the aspects of mechanisms for NOM removal as well as the treatability of different groups of DBP precursors.Next,a thorough overview is presented to summarize the recent developments and breakthroughs in the removal of DBP precursors using BAC process,and the contents involved include effect of pre-BAC ozonation,removal performance of various DBP precursors,toxicity risk reduction,fractional analysis of NOM,effect of empty bed contact time(EBCT)and engineered biofiltration.Finally,some recommendations are made to strengthen current research and address the knowledge gaps,including the issues of microbial mechanisms,toxicity evaluation,degradation kinetics and microbial products. 展开更多
关键词 disinfection byproduct precursor Biological activated carbon Formation potential Natural organic matter Empty bed contact time OZONATION
原文传递
Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: A review 被引量:18
3
作者 Ye Du Xiao-Tong Lv +4 位作者 Qian-Yuan Wu Da-Yin Zhang Yu-Ting Zhou Lu Peng Hong-Ying Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第8期51-63,共13页
Chlorination is essential to the safety of reclaimed water; however, this process leads to concern regarding the formation of disinfection byproducts(DBPs) and toxicity. This study reviewed the formation and control... Chlorination is essential to the safety of reclaimed water; however, this process leads to concern regarding the formation of disinfection byproducts(DBPs) and toxicity. This study reviewed the formation and control strategies for DBPs and toxicity in reclaimed water during chlorination.Both regulated and emerging DBPs have been frequently detected in reclaimed water during chlorination at a higher level than those in drinking water, indicating they pose a greater risk to humans. Luminescent bacteria and Daphnia magna acute toxicity, anti-estrogenic activity and cytotoxicity generally increased after chlorination because of the formation of DBPs. Genotoxicity by umu-test and estrogenic activity were decreased after chlorination because of destruction of toxic chemicals. During chlorination, water quality significantly impacted changes in toxicity.Ammonium tended to attenuate toxicity changes by reacting with chlorine to form chloramine,while bromide tended to aggravate toxicity changes by forming hypobromous acid. During pretreatment by ozonation and coagulation, disinfection byproduct formation potential(DBPFP)and toxicity formation potential(TFP) occasionally increase, which is accompanied by DOC removal; thus, the decrease of DOC was limited to indicate the decrease of DBPFP and TFP. It is more important to eliminate the key fraction of precursors such as hydrophobic acid and hydrophilic neutrals. During chlorination, toxicities can increase with the increasing chlorine dose and contact time. To control the excessive toxicity formation, a relatively low chlorine dose and short contact time were required. Quenching chlorine residual with reductive reagents also effectively abated the formation of toxic compounds. 展开更多
关键词 Reclaimed water Chlorination disinfection byproducts Toxicity Precursor
原文传递
Formation of water disinfection byproduct 2,6-dichloro-1,4-benzoquinone from chlorination of green algae 被引量:12
4
作者 Fei Ge Yao Xiao +3 位作者 Yixuan Yang Wei Wang Birget Moe Xing-Fang Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期1-8,共8页
We report that green algae in lakes and rivers can serve as precursors of halobenzoquinone(HBQ) disinfection byproducts(DBPs) produced during chlorination. Chlorination of a common green alga, Chlorella vulgaris, ... We report that green algae in lakes and rivers can serve as precursors of halobenzoquinone(HBQ) disinfection byproducts(DBPs) produced during chlorination. Chlorination of a common green alga, Chlorella vulgaris, produced 2,6-dichloro-1,4-benzoquinone(2,6-DCBQ), the most prevalent HBQ DBP in disinfected water. Under varying p H conditions(p H 6.0–9.0), 2,6-DCBQ formation ranged from 0.3 to 2.1 μg/mg C with maximum formation at p H 8.0. To evaluate the contribution of organic components of C. vulgaris to 2,6-DCBQ formation, we separated the organics into two fractions, the protein-rich fraction of intracellular organic matter(IOM) and the polysaccharide-laden fraction of extracellular organic matter(EOM). Chlorination of IOM and EOM produced 1.4 μg/mg C and 0.7 μg/mg C of 2,6-DCBQ, respectively. The IOM generated a two-fold higher 2,6-DCBQ formation potential than the EOM fraction, suggesting that proteins are potent 2,6-DCBQ precursors. This was confirmed by the chlorination of proteins extracted from C. vulgaris: the amount of 2,6-DCBQ produced is linearly correlated with the concentration of total algal protein(R2= 0.98). These results support that proteins are the primary precursors of 2,6-DCBQ in algae, and control of green algal bloom outbreaks in source waters is important for management of HBQ DBPs. 展开更多
关键词 disinfection byproducts Halobenzoquinones Green algae Proteins precursors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部