The diversity provided by disjoint paths can increase the survivability of communication networks. This paper considers the allocation of network error correction flow on a network that consists of disjoint paths from...The diversity provided by disjoint paths can increase the survivability of communication networks. This paper considers the allocation of network error correction flow on a network that consists of disjoint paths from the source node to the destination node. Specifically, we propose an algorithm of allocating the path-flows to support the given rate with minimum cost. Our analysis shows that the asymptotic time complexity of this algorithm is linearithmic, and this algorithm is optimal in general展开更多
The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical...The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented. The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy. Using the Boolean laws of set operation and the probabilistic operation principal, a recursive decomposition process is constructed in which the disjoint minimal path set and the disjoint minimal cut set are simultaneously enumerated. As the result, a probabilistic inequality can be used to provide results that satisfy a prescribed error bound. During the decomposition process, different from the original recursive decomposition algorithm which only removes edges to simplify the network, the proposed algorithm simplifies the network by merging nodes into sources and removing edges. As a result, the proposed algorithm can obtain simpler networks. Moreover, for a network owning s-independent components in its component set, two network reduction techniques are introduced to speed up the proposed algorithm. A series of case studies, including an actual water distribution network and a large urban gas system, are calculated using the proposed algorithm. The results indicate that the proposed algorithm provides a useful probabilistic analysis method for the seismic reliability evaluation of lifeline networks.展开更多
基金supported by the National Key Basic Research and Development (973) Program of China (No. 2013CB329002)the National High-Tech Research and Development (863) Program of China (No. 2014AA01A703)+3 种基金the National Science and Technology Major Project (No. 2013ZX03004007)the Program for New Century Excellent Talents in University (No. NCET13-0321)the International Science and Technology Cooperation Program (No. 2012DFG12010)the Tsinghua Research Funding (No. 2010THZ03-2)
文摘The diversity provided by disjoint paths can increase the survivability of communication networks. This paper considers the allocation of network error correction flow on a network that consists of disjoint paths from the source node to the destination node. Specifically, we propose an algorithm of allocating the path-flows to support the given rate with minimum cost. Our analysis shows that the asymptotic time complexity of this algorithm is linearithmic, and this algorithm is optimal in general
基金Natural Science Funds for the Innovative Research Group of China Under Grant No.50621062
文摘The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented. The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy. Using the Boolean laws of set operation and the probabilistic operation principal, a recursive decomposition process is constructed in which the disjoint minimal path set and the disjoint minimal cut set are simultaneously enumerated. As the result, a probabilistic inequality can be used to provide results that satisfy a prescribed error bound. During the decomposition process, different from the original recursive decomposition algorithm which only removes edges to simplify the network, the proposed algorithm simplifies the network by merging nodes into sources and removing edges. As a result, the proposed algorithm can obtain simpler networks. Moreover, for a network owning s-independent components in its component set, two network reduction techniques are introduced to speed up the proposed algorithm. A series of case studies, including an actual water distribution network and a large urban gas system, are calculated using the proposed algorithm. The results indicate that the proposed algorithm provides a useful probabilistic analysis method for the seismic reliability evaluation of lifeline networks.