期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dislocation behavior in a polycrystalline Mg-Y alloy using multi-scale characterization and VPSC simulation 被引量:2
1
作者 Bijin Zhou Leyun Wang +6 位作者 Jinhui Wang Alireza Maldar Gaoming Zhu Hailong Jia Peipeng Jin Xiaoqin Zeng Yanjun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第3期87-98,共12页
In this study,the dislocation behavior of a polycrystalline Mg-5Y alloy during tensile deformation was quantitatively studied by an in-situ tensile test,visco-plastic self-consistent(VPSC)modeling,and transmission ele... In this study,the dislocation behavior of a polycrystalline Mg-5Y alloy during tensile deformation was quantitatively studied by an in-situ tensile test,visco-plastic self-consistent(VPSC)modeling,and transmission electron microscopy(TEM).The results of the in-situ tensile test show that<a>dislocations contribute to most of the deformation,while a small fraction of<c+a>dislocations are also activated near grain boundaries(GBs).The critical resolved shear stresses(CRSSs)of different dislocation slip systems were estimated.The CRSS ratio between prismatic and basal<a>dislocation slip in the Mg-Y alloy(~13)is lower than that of pure Mg(~80),which is considered as a major reason for the high ductility of the alloy.TEM study shows that the<c+a>dislocations in the alloy have high mobility,which also helps to accommodate the deformation near GBs. 展开更多
关键词 Mg-Y alloy dislocation behavior Deformation mechanisms Critical resolved shear stress
原文传递
Correlation between the Cyclic Stress Behavior and Microstructure in 316LN based on the Analysis of Hysteresis Loops
2
作者 常波 张峥 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期780-785,共6页
Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stre... Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level. 展开更多
关键词 cyclic stress behavior partitioning of hysteresis loops microstructure dislocation rearrangement internal stress
下载PDF
Superb creep lives of Ni-based single crystal superalloy through size effects and strengthening heterostructure γ/γ' interfaces
3
作者 Haibo Long Yunsong Zhao +8 位作者 Junbo Zhao Xiaoyi Yuan Hao Fan Yushi Luo Wei Li Zibing An Shengcheng Mao Gang Liu Xiaodong Han 《National Science Open》 2024年第4期145-155,共11页
This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by ... This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by reducing the size of theγ′phase;(2)key alloy composition control to strengthen the heterostructureγ/γ′interfaces.This strategy proved very effective by the designed three superalloys'prolonged creep lives.An alloy exhibits ultra-long creep life by 388 h at 1100°C/137 MPa,which runs at the highest level among those alloys without Ru addition.With Ru addition,an alloy that lasted for 748 h with a creep strain of~6%at 1110°C/137 MPa is developed.This study provides a new route of high-temperature creep lives through heterostructure interfacial design with size effects and key alloying elements. 展开更多
关键词 Ni-based single crystal superalloy creep properties dislocation behavior interface structure size effect alloy composition
原文传递
Effect of Twin Boundary–Dislocation–Solute Interaction on Detwinning in a Mg–3Al–1Zn Alloy 被引量:1
4
作者 Jing Xu Bo Guan +3 位作者 Huihui Yu Xuezhen Cao Yunchang Xin Qing Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1239-1244,共6页
In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically ... In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically studied.The results show that a large number of {101^-2} twins disappear during recompression along the normal direction.Both the TB-dislocation interaction and TB-solute-dislocation interaction can greatly enhance the yield stress of the recompression along the normal direction(ND).However,the solute segregation at {1012} TBs with an intensive interaction with 〈a〉 dislocations cannot further enhance the yield stress of ND recompression.The samples with TB-dislocation interaction show a similar working hardening performance with that subjected to a TB-solute-dislocation interaction.Both the TB-dislocation interaction and TB-solute-dislocation interaction greatly reduce the value of work hardening peaks during a detwinning predominant deformation. 展开更多
关键词 Magnesium alloy Mechanical behavior Twinning dislocation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部