In this study,the dislocation behavior of a polycrystalline Mg-5Y alloy during tensile deformation was quantitatively studied by an in-situ tensile test,visco-plastic self-consistent(VPSC)modeling,and transmission ele...In this study,the dislocation behavior of a polycrystalline Mg-5Y alloy during tensile deformation was quantitatively studied by an in-situ tensile test,visco-plastic self-consistent(VPSC)modeling,and transmission electron microscopy(TEM).The results of the in-situ tensile test show that<a>dislocations contribute to most of the deformation,while a small fraction of<c+a>dislocations are also activated near grain boundaries(GBs).The critical resolved shear stresses(CRSSs)of different dislocation slip systems were estimated.The CRSS ratio between prismatic and basal<a>dislocation slip in the Mg-Y alloy(~13)is lower than that of pure Mg(~80),which is considered as a major reason for the high ductility of the alloy.TEM study shows that the<c+a>dislocations in the alloy have high mobility,which also helps to accommodate the deformation near GBs.展开更多
Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stre...Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level.展开更多
This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by ...This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by reducing the size of theγ′phase;(2)key alloy composition control to strengthen the heterostructureγ/γ′interfaces.This strategy proved very effective by the designed three superalloys'prolonged creep lives.An alloy exhibits ultra-long creep life by 388 h at 1100°C/137 MPa,which runs at the highest level among those alloys without Ru addition.With Ru addition,an alloy that lasted for 748 h with a creep strain of~6%at 1110°C/137 MPa is developed.This study provides a new route of high-temperature creep lives through heterostructure interfacial design with size effects and key alloying elements.展开更多
In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically ...In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically studied.The results show that a large number of {101^-2} twins disappear during recompression along the normal direction.Both the TB-dislocation interaction and TB-solute-dislocation interaction can greatly enhance the yield stress of the recompression along the normal direction(ND).However,the solute segregation at {1012} TBs with an intensive interaction with 〈a〉 dislocations cannot further enhance the yield stress of ND recompression.The samples with TB-dislocation interaction show a similar working hardening performance with that subjected to a TB-solute-dislocation interaction.Both the TB-dislocation interaction and TB-solute-dislocation interaction greatly reduce the value of work hardening peaks during a detwinning predominant deformation.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51631006 and 51671127)the Qinghai Provincial Science and Technology Key Program(No.2018GX-A1)the China Scholarship Council(No.201806230150)
文摘In this study,the dislocation behavior of a polycrystalline Mg-5Y alloy during tensile deformation was quantitatively studied by an in-situ tensile test,visco-plastic self-consistent(VPSC)modeling,and transmission electron microscopy(TEM).The results of the in-situ tensile test show that<a>dislocations contribute to most of the deformation,while a small fraction of<c+a>dislocations are also activated near grain boundaries(GBs).The critical resolved shear stresses(CRSSs)of different dislocation slip systems were estimated.The CRSS ratio between prismatic and basal<a>dislocation slip in the Mg-Y alloy(~13)is lower than that of pure Mg(~80),which is considered as a major reason for the high ductility of the alloy.TEM study shows that the<c+a>dislocations in the alloy have high mobility,which also helps to accommodate the deformation near GBs.
基金Funded by the Nuclear Power Major Project(No.2011zx06004-002)
文摘Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level.
基金supported by the National Key Research and Development Program of China(2021YFA1200201)the Natural Science Foundation of China(91860202,51988101,52171001,52071003 and 52001297)+3 种基金the R&D Program of Beijing Municipal Education Commission(KM202210005003)the Beijing Outstanding Young Scientists Projects(BJJWZYJH01201910005018)the Beijing Nova Program(Z211100002121170)the Overseas Expertise Introduction Project for Discipline Innovation(“111”project)(DB18015)
文摘This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by reducing the size of theγ′phase;(2)key alloy composition control to strengthen the heterostructureγ/γ′interfaces.This strategy proved very effective by the designed three superalloys'prolonged creep lives.An alloy exhibits ultra-long creep life by 388 h at 1100°C/137 MPa,which runs at the highest level among those alloys without Ru addition.With Ru addition,an alloy that lasted for 748 h with a creep strain of~6%at 1110°C/137 MPa is developed.This study provides a new route of high-temperature creep lives through heterostructure interfacial design with size effects and key alloying elements.
基金the financial support from the National Natural Science Foundation of China(Nos.51371203and 51571041)the National Key Basic Research Program of China(No.2013CB632204)
文摘In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically studied.The results show that a large number of {101^-2} twins disappear during recompression along the normal direction.Both the TB-dislocation interaction and TB-solute-dislocation interaction can greatly enhance the yield stress of the recompression along the normal direction(ND).However,the solute segregation at {1012} TBs with an intensive interaction with 〈a〉 dislocations cannot further enhance the yield stress of ND recompression.The samples with TB-dislocation interaction show a similar working hardening performance with that subjected to a TB-solute-dislocation interaction.Both the TB-dislocation interaction and TB-solute-dislocation interaction greatly reduce the value of work hardening peaks during a detwinning predominant deformation.