Microstructure and creep properties of AZ61 alloy containing 1 and 3 wt.% Ca were investigated. The creep properties were examined using impression method under different stresses between 200 and 500 MPa at the temper...Microstructure and creep properties of AZ61 alloy containing 1 and 3 wt.% Ca were investigated. The creep properties were examined using impression method under different stresses between 200 and 500 MPa at the temperature ranging from 423 to 491 K. The microstructure of AZ61 alloy contains α(Mg) matrix and Mg17 Al12 intermetallic phases. It is shown that adding Ca to AZ61 alloy reduces the amount of Mg17 Al12 phase via forming(Mg,Al)2 Ca phase;furthermore, increasing the Ca content to 3 wt.% leads to the formation of(Mg,Al)2 Ca phase, as well as the elimination of the Mg17 Al12 phase. Creep properties of AZ61 alloy are improved with the Ca addition. The improvement in creep properties is attributed to the reduction in the amount of Mg17 Al12 phase and the formation of(Mg,Al)2 Ca phase with high thermal stability. According to the obtained creep data, it is concluded that the pipe diffusion-climb controlled dislocation creep is the dominant creep mechanism and Ca addition has no influence on this mechanism. The effect of pre-deformation on the creep properties of AZ61+3%Ca alloy reveals that the creep resistance of the alloy depends on the continuity of(Mg,Al)2 Ca phase. It is decreased by reducing the phase continuity.展开更多
The effects of Mg and semi solid processing on the creep properties ofA356 A1 alloy were investigated. The results show that the dislocation climb controlled creep is the dominant creep mechanism and it is not affecte...The effects of Mg and semi solid processing on the creep properties ofA356 A1 alloy were investigated. The results show that the dislocation climb controlled creep is the dominant creep mechanism and it is not affected by the semi solid processing and further addition of Mg. Mg improves the alloy creep properties probably by forming large Chinese script Mg2Si compounds at the interdendritic regions. The semi solid processed specimens exhibit better creep properties in comparison with the as cast ones. It is attributed to the reduction in the stacking fault energy resulting from the significant dissolution of Mg in the a(A1) phase.展开更多
In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is f...In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is found that the relation successfully elucidates the creep mechanism related to current constitutive relations. The model can be used to describe the temperature and frequency dependent low cycle fatigue behavior of the solder. The relation and the model are further employed in part Ⅱ to develop the numerical simulation approach for the long-term reliability assessment of the plastic ball grid array (BGA) assembly.展开更多
Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the ...Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the strain rate versus the differential stress through collecting the data from salt creep experiments at a range of temperatures(20–200 ℃) in laboratories. The aim is to collect data about salt deformation in nature, and the flow properties can be extracted from the data in laboratory experiments.Moreover, as an important preparation for salt tectonics modeling, a numerical model based on creep experiments of rock salt was developed in order to verify the specific model using the Abaqus package. Finally, under the condition of low differential stresses, the deformation mechanism would be extrapolated and discussed according to microstructure research. Since the studies of salt deformation in nature are the reliable extrapolation of laboratory data, we simplified the rock salt rheology to dislocation creep corresponding to power law creep(n = 5) with the appropriate material parameters in the salt tectonic modeling.展开更多
High temperature tensile properties and microstructure evolutions of twin-roll-cast AZ31B magnesium alloy were investigated over a strain rate range from 10-3 to 1 s-1.It is suggested that the dominant deformation mec...High temperature tensile properties and microstructure evolutions of twin-roll-cast AZ31B magnesium alloy were investigated over a strain rate range from 10-3 to 1 s-1.It is suggested that the dominant deformation mechanism in the lower strain rate regimes is dislocation creep controlled by grain boundary diffusion at lower temperature and by lattice diffusion at higher temperatures,respectively.Furthermore,dislocation glide and twinning are dominant deformation mechanisms at higher strain-rate.The processing map,the effective diffusion coefficient and activation energy map of the alloy were established.The relations of microstructure evolutions to the transition temperature of dominant diffusion process,the activation energy platform and the occurrence of the full dynamic recrystallization with the maximum peak efficiency were analyzed.It is revealed that the optimum conditions for thermo-mechanical processing of the alloy are at a temperature range from 553 to 593 K,and a strain rate range from 7×10-3 to 2×10-3 s-1.展开更多
Nickel-based single-crystal superalloys are the key materials for the manufacturing and development of advanced aeroengines. Rhenium is a crucial alloying element in the advanced nickel-based single-crystal superalloy...Nickel-based single-crystal superalloys are the key materials for the manufacturing and development of advanced aeroengines. Rhenium is a crucial alloying element in the advanced nickel-based single-crystal superalloys for its special strengthening effects. The addition of Re could effectively enhance the creep properties of the single-crystal superalloys; thus, the content of Re is considered as one of the characteristics in different-generation single-crystal superalloys. Owing to the fundamental importance of rhenium to nickel-based single-crystal superalloys, much progress has been made on understanding of the effect of rhenium in the single-crystal superalloys. While the effect of Re doping on the nickelbased superalloys is well documented, the origins of the socalled rhenium effect are still under debate. In this paper,the effect of Re doping on the single-crystal superalloys and progress in understanding the rhenium effect are reviewed. The characteristics of the d-states occupancy in the electronic structure of Re make it the slowest diffusion elements in the single-crystal superalloys, which is undoubtedly responsible for the rhenium effect, while the postulates of Re cluster and the enrichment of Re at the c/c0 interface are still under debate, and the synergistic action of Re with other alloying elements should be further studied.Additionally, the interaction of Re with interfacial dislocations seems to be a promising explanation for the rhenium effect. Finally, the addition of Ru could help suppress topologically close-packed(TCP) phase formation and strengthen the Re doping single-crystal superalloys.Understanding the mechanism of rhenium effect will be beneficial for the effective utilization of Re and the design of low-cost single-crystal superalloys.展开更多
文摘Microstructure and creep properties of AZ61 alloy containing 1 and 3 wt.% Ca were investigated. The creep properties were examined using impression method under different stresses between 200 and 500 MPa at the temperature ranging from 423 to 491 K. The microstructure of AZ61 alloy contains α(Mg) matrix and Mg17 Al12 intermetallic phases. It is shown that adding Ca to AZ61 alloy reduces the amount of Mg17 Al12 phase via forming(Mg,Al)2 Ca phase;furthermore, increasing the Ca content to 3 wt.% leads to the formation of(Mg,Al)2 Ca phase, as well as the elimination of the Mg17 Al12 phase. Creep properties of AZ61 alloy are improved with the Ca addition. The improvement in creep properties is attributed to the reduction in the amount of Mg17 Al12 phase and the formation of(Mg,Al)2 Ca phase with high thermal stability. According to the obtained creep data, it is concluded that the pipe diffusion-climb controlled dislocation creep is the dominant creep mechanism and Ca addition has no influence on this mechanism. The effect of pre-deformation on the creep properties of AZ61+3%Ca alloy reveals that the creep resistance of the alloy depends on the continuity of(Mg,Al)2 Ca phase. It is decreased by reducing the phase continuity.
文摘The effects of Mg and semi solid processing on the creep properties ofA356 A1 alloy were investigated. The results show that the dislocation climb controlled creep is the dominant creep mechanism and it is not affected by the semi solid processing and further addition of Mg. Mg improves the alloy creep properties probably by forming large Chinese script Mg2Si compounds at the interdendritic regions. The semi solid processed specimens exhibit better creep properties in comparison with the as cast ones. It is attributed to the reduction in the stacking fault energy resulting from the significant dissolution of Mg in the a(A1) phase.
基金The project supported by the National Natural Science Foundation of China (59705008)
文摘In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is found that the relation successfully elucidates the creep mechanism related to current constitutive relations. The model can be used to describe the temperature and frequency dependent low cycle fatigue behavior of the solder. The relation and the model are further employed in part Ⅱ to develop the numerical simulation approach for the long-term reliability assessment of the plastic ball grid array (BGA) assembly.
基金RWTH Aachen UniversityChina University of Petroleum for the support of the work+1 种基金funded by the startup project of China University of Petroleum, Beijing (No.2462014YJRC041)supported by Science Foundation of China University of Petroleum, Beijing (No. C201601)
文摘Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the strain rate versus the differential stress through collecting the data from salt creep experiments at a range of temperatures(20–200 ℃) in laboratories. The aim is to collect data about salt deformation in nature, and the flow properties can be extracted from the data in laboratory experiments.Moreover, as an important preparation for salt tectonics modeling, a numerical model based on creep experiments of rock salt was developed in order to verify the specific model using the Abaqus package. Finally, under the condition of low differential stresses, the deformation mechanism would be extrapolated and discussed according to microstructure research. Since the studies of salt deformation in nature are the reliable extrapolation of laboratory data, we simplified the rock salt rheology to dislocation creep corresponding to power law creep(n = 5) with the appropriate material parameters in the salt tectonic modeling.
基金Project(3093024) supported by the Natural Science Foundation of Beijing, China Project(2007XM035) supported by the Science Foundation of Beijing Jiaotong University
文摘High temperature tensile properties and microstructure evolutions of twin-roll-cast AZ31B magnesium alloy were investigated over a strain rate range from 10-3 to 1 s-1.It is suggested that the dominant deformation mechanism in the lower strain rate regimes is dislocation creep controlled by grain boundary diffusion at lower temperature and by lattice diffusion at higher temperatures,respectively.Furthermore,dislocation glide and twinning are dominant deformation mechanisms at higher strain-rate.The processing map,the effective diffusion coefficient and activation energy map of the alloy were established.The relations of microstructure evolutions to the transition temperature of dominant diffusion process,the activation energy platform and the occurrence of the full dynamic recrystallization with the maximum peak efficiency were analyzed.It is revealed that the optimum conditions for thermo-mechanical processing of the alloy are at a temperature range from 553 to 593 K,and a strain rate range from 7×10-3 to 2×10-3 s-1.
基金financially supported by the National Basic Research Program of China(No.2009CB623701)the National Natural Science Foundation of China(Nos.11374174,50971075 and 51390471)
文摘Nickel-based single-crystal superalloys are the key materials for the manufacturing and development of advanced aeroengines. Rhenium is a crucial alloying element in the advanced nickel-based single-crystal superalloys for its special strengthening effects. The addition of Re could effectively enhance the creep properties of the single-crystal superalloys; thus, the content of Re is considered as one of the characteristics in different-generation single-crystal superalloys. Owing to the fundamental importance of rhenium to nickel-based single-crystal superalloys, much progress has been made on understanding of the effect of rhenium in the single-crystal superalloys. While the effect of Re doping on the nickelbased superalloys is well documented, the origins of the socalled rhenium effect are still under debate. In this paper,the effect of Re doping on the single-crystal superalloys and progress in understanding the rhenium effect are reviewed. The characteristics of the d-states occupancy in the electronic structure of Re make it the slowest diffusion elements in the single-crystal superalloys, which is undoubtedly responsible for the rhenium effect, while the postulates of Re cluster and the enrichment of Re at the c/c0 interface are still under debate, and the synergistic action of Re with other alloying elements should be further studied.Additionally, the interaction of Re with interfacial dislocations seems to be a promising explanation for the rhenium effect. Finally, the addition of Ru could help suppress topologically close-packed(TCP) phase formation and strengthen the Re doping single-crystal superalloys.Understanding the mechanism of rhenium effect will be beneficial for the effective utilization of Re and the design of low-cost single-crystal superalloys.