期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Evaluation of threading dislocation density of strained Ge epitaxial layer by high resolution x-ray diffraction 被引量:1
1
作者 苗渊浩 胡辉勇 +3 位作者 李鑫 宋建军 宣荣喜 张鹤鸣 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期511-515,共5页
The analysis of threading dislocation density (TDD) in Ge-on-Si layer is critical for developing lasers, light emitting diodes (LEDs), photodetectors (PDs), modulators, waveguides, metal oxide semiconductor fiel... The analysis of threading dislocation density (TDD) in Ge-on-Si layer is critical for developing lasers, light emitting diodes (LEDs), photodetectors (PDs), modulators, waveguides, metal oxide semiconductor field effect transistors (MOSFETs), and also the integration of Si-based monolithic photonics. The TDD of Ge epitaxial layer is analyzed by etching or transmission electron microscope (TEM). However, high-resolution x-ray diffraction (HR-XRD) rocking curve provides an optional method to analyze the TDD in Ge layer. The theory model of TDD measurement from rocking curves was first used in zinc-blende semiconductors. In this paper, this method is extended to the case of strained Ge-on-Si layers. The HR-XRD 2θ/ω scan is measured and Ge (004) single crystal rocking curve is utilized to calculate the TDD in strained Ge epitaxial layer. The rocking curve full width at half maximum (FWHM) broadening by incident beam divergence of the instrument, crystal size, and curvature of the crystal specimen is subtracted. The TDDs of samples A and B are calculated to be 1.41108 cm-2 and 6.47108 cm-2, respectively. In addition, we believe the TDDs calculated by this method to be the averaged dislocation density in the Ge epitaxial layer. 展开更多
关键词 HR-XRD RPCVD threading dislocation density (TDD) etching pit density (EPD)
下载PDF
Microstructure, Dislocation Density and Thermal Expansion Behavior Using Thermo Elastic Models of Zircon Sand Reinforced as Cast ZA-27 Composites
2
作者 G. R. Gurunagendra V. Bharat +3 位作者 B. R. Raju D. G. Amith Vijayakumar Pujar C. Ravi Keerthi 《Journal of Minerals and Materials Characterization and Engineering》 2021年第1期100-115,共16页
In the present work stir casting route is used to fabricate the ZA27 Metal matrix composites containing 3 wt%, 6 wt%, 9 wt%, and 12 wt%. Zircon sand particulates of size 100 mesh. Microstructure studies using Optical ... In the present work stir casting route is used to fabricate the ZA27 Metal matrix composites containing 3 wt%, 6 wt%, 9 wt%, and 12 wt%. Zircon sand particulates of size 100 mesh. Microstructure studies using Optical Microscopy, SEM-EDAX are carried out to ascertain the distribution and morphology of particulates in the composites. Effect of zircon sand as reinforcement on bulk density, porosity, of the fabricated composites is studied. SEM studies are carried out to understand the behavior of as-cast ZA27 alloy reinforced with zircon sand. The dislocation density of the fabricated composite affects the strength of the composites and depends on the strain due to thermal mismatch and is found to increase with increase in weight% of zircon sand. However, it does not consider casting defects of voids/clustering observed in micrographs of the fabricated composite. Porosity in composites does not have influence on Coefficient of thermal expansion (CTE) of the ZA27 composites studied using thermoelastic models like Kerner and turner model and rule of mixtures of composite. 展开更多
关键词 density POROSITY dislocation density Thermoelastic Models Rule of Mixtures
下载PDF
Enhancing strength-ductility synergy in a Mg-Gd-Y-Zr alloy at sub-zero temperatures via high dislocation density and shearable precipitates 被引量:1
3
作者 Xixi Qi Yangxin Li +7 位作者 Xinyu Xu Yuxuan Liu Huan Zhang Qingchun Zhu Gaoming Zhu Jingya Wang Mingxin Huang Xiaoqin Zeng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第35期123-132,共10页
The strength-ductility trade-offdilemma is hard to be evaded in high-strength Mg alloys at sub-zero temperatures,especially in the Mg alloys containing a high volume fraction of precipitates.In this paper,we report an... The strength-ductility trade-offdilemma is hard to be evaded in high-strength Mg alloys at sub-zero temperatures,especially in the Mg alloys containing a high volume fraction of precipitates.In this paper,we report an enhanced strength-ductility synergy at sub-zero temperatures in an aged Mg-7.37Gd-3.1Y-0.27Zr alloy.The tensile stress-strain curves at room temperature(RT),−70℃ and−196℃ show that the strength increases monotonically with decreasing temperature,but the elongation increases first from RT to−70℃ then declines from−70℃ to−196℃.After systematic investigation of the microstructure evolutions at different deformation temperatures via synchrotron X-ray diffraction,electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM),it is found that a high dislocation density with sufficient<c+a>dislocations promotes good tensile ductility at−70℃,which is attributed to the minimized critical resolved shear stress(CRSS)ratio of non-basal<c+a>to basaldislocations.In ad-dition,more shearable precipitates can further improve the ductility via lengthening the mean free path of dislocation glide.The present work demonstrates that an excellent strength-ductility synergy at sub-zero temperatures can be achieved by introducing a high dislocation density and shearable precipitates in high-strength Mg alloys. 展开更多
关键词 Magnesium alloys Strength-ductility synergy dislocation density Critical resolved shear stress Shearable precipitate
原文传递
An iterative blending integrating grinding force model considering grain size and dislocation density evolution
4
作者 Zi-Shan Ding Yun-Hui Zhao +3 位作者 Miao-Xian Guo Wei-Cheng Guo Chong-Jun Wu Steven Y.Liang 《Advances in Manufacturing》 SCIE EI CAS CSCD 2023年第3期428-443,共16页
The dynamic force load in grinding process is considered as a crucial factor affecting the quality of parts,and a better understanding of the mechanism of force generation is conducive to revealing the evolution of ma... The dynamic force load in grinding process is considered as a crucial factor affecting the quality of parts,and a better understanding of the mechanism of force generation is conducive to revealing the evolution of material microstructure more precisely.In this study,an iterative blending integrating grinding force model that comprehensively considers the impact of grain size and dislocation density evolution of the material is proposed.According to the grinding kinematics,the interaction of grit-workpiece is divided into rubbing,plowing,and chip formation stages in each grinding zone.On this basis,the evolution of material microstructure in the current chip formation stage will affect the rubbing force in the next grinding arc through flow stresses,which in turn will influence the total grinding force.Therefore,the flow stress models in rubbing and chip formation stages are firstly established,and then the dislocation density prediction model is established experimentally based on the characteristics of grain size.The effects of the evolution of grain size and dislocation density on the grinding forces during the grinding process are studied by means of iterative cycles.The results indicate that the implementation of an iterative blending scheme is instrumental in obtaining a higher accurate prediction of the grinding force and a deeper insight of the influence mechanisms of materials microstructure on grinding process. 展开更多
关键词 Grinding force Grain size dislocation density Iterative loop
原文传递
Microstructural evolution,dislocation density and tensile properties of Al–6.5Si–2.1Cu–0.35Mg alloy produced by different casting processes 被引量:2
5
作者 S.Samat M.Z.Omar +3 位作者 A.H.Baghdadi I.F.Mohamed A.Rajabi A.M.Aziz 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第36期145-157,共13页
Al–Si–Cu–Mg foundry alloys are used in casting process technologies.However,their strength properties remain low due to their microstructural characteristics and porosity.In this work,the microstructural characteri... Al–Si–Cu–Mg foundry alloys are used in casting process technologies.However,their strength properties remain low due to their microstructural characteristics and porosity.In this work,the microstructural characteristics,dislocation densities,and mechanical properties of Al–Si–Cu–Mg cast alloys prepared through different casting methods were studied experimentally.Four casting processes,namely,gravity casting(GC),rheocasting(RC),thixoforming(Thixo),and Thixo with heat treatment,were used.The GC and RC samples had mainly dendriticα-Al phase microstructures and exhibited coarse Si particles and intermetallic compounds in their interdendritic regions.By contrast,the Thixo and heat-treated Thixo(HT-Thixo)samples exhibited microstructural refinement with uniformly distributedα-Al globules,fine fibrous Si particles,and fragmented intermetallic compounds amongα-Al globules.The accumulation of dislocation densities increased in the Thixo sample as the strain was increased due to plastic deformation.Furthermore,the ultimate tensile strength and yield strength of the HT-Thixo sample increased by 87%and 63%,respectively,relative to those of the GC sample.The cleavage fracture displayed by the GC and RC samples led to brittle failure.Meanwhile,the Thixo and HT-Thixo samples presented dimple-based ductile fracture. 展开更多
关键词 Al–Si–Cu–Mg alloy THIXOFORMING Microstructure Mechanical property dislocation density
原文传递
The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel 被引量:1
6
作者 Wei Li Martina Vittorietti +1 位作者 Geurt Jongbloed Jilt Sietsma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期35-43,共9页
Understanding the relationship between microstructure features and mechanical properties is of great significance for the improvement and specific adjustment of steel properties.The relationship between mean grain siz... Understanding the relationship between microstructure features and mechanical properties is of great significance for the improvement and specific adjustment of steel properties.The relationship between mean grain size and yield strength is established by the well-known Hall-Petch equation.But due to the complexity of the grain configuration within materials,considering only the mean value is unlikely to give a complete representation of the mechanical behavior.The classical Taylor equation is often used to account for the effect of dislocation density,but not thoroughly tested in combination with grain size influence.In the present study,systematic heat treatment routes and cold rolling followed by annealing are designed for interstitial free(IF)steel to achieve ferritic microstructures that not only vary in mean grain size,but also in grain size distribution and in dislocation density,a combination that is rarely studied in the literature.Optical microscopy is applied to determine the grain size distribution.The dislocation density is determined through XRD measurements.The hardness is analyzed on its relation with the mean grain size,as well as with the grain size distribution and the dislocation density.With the help of the variable selection tool LASSO,it is shown that dislocation density,mean grain size and kurtosis of grain size distribution are the three features which most strongly affect hardness of IF steel. 展开更多
关键词 Interstitial free steel HARDNESS Grain size distribution dislocation density
原文传递
Relationship between Dislocation Density in P91 Steel and Its Nonlinear Ultrasonic Parameter 被引量:3
7
作者 Ye-qing CAI Jin-zhong SUN +2 位作者 Cheng-jie LIU Shi-wei MA Xi-cheng WEI 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第11期1024-1030,共7页
P91 steel is an important bearing material used in nuclear power plants. The study of its mechanical degradation behavior is important for ensuring safe operation. The relationship between the dislocation density of P... P91 steel is an important bearing material used in nuclear power plants. The study of its mechanical degradation behavior is important for ensuring safe operation. The relationship between the dislocation density of P91 steel under different strains and the corresponding nonlinear ultrasonic parameter β was studied. The dislocation density of strained samples was estimated by X-ray diffraction. Nonlinear ultrasonic testing was conducted to evaluate β, showing that this value increased with increasing dislocation density induced by different tensile elongations. It was shown that the ultrasonic secondharmonic generation technique can effectively evaluate the degradation behavior of metallic materials, and the prediction of the residual life of bearing parts in service can be made based on β and the dislocation density. 展开更多
关键词 dislocation density P91 steel nonlinear ultrasonic second order harmonic
原文传递
Temperature dependence of LiNbO3 dislocation density in the near-surface layer
8
作者 Oksana Semenova Aleksei Sosunov +1 位作者 Nikolai Prokhorov Roman Ponomarev 《Chinese Optics Letters》 SCIE EI CAS CSCD 2022年第6期40-46,共7页
Density of dislocations in the near-surface layer was investigated in X-cut LiNbO_(3) depending on thermal annealing in the temperature range of 400℃–600℃.A dynamic model of randomly distributed dislocations has be... Density of dislocations in the near-surface layer was investigated in X-cut LiNbO_(3) depending on thermal annealing in the temperature range of 400℃–600℃.A dynamic model of randomly distributed dislocations has been developed for LiNbO_(3) by using X-ray diffraction.The experimental results showed that the dislocation density of the near-surface layer reached the minimum at the thermal annealing temperature of 500℃,with the analysis being performed when wet selective etching and X-ray diffraction methods were used.We concluded that homogenization annealing is an effective technique to improve the quality of photonic circuits based on LiNbO_(3).The results obtained are important for optical waveguides,LiNbO_(3)-on-insulator-based micro-photonic devices,electro-optical modulators,sensors,etc. 展开更多
关键词 lithium niobate etching pits near-surface layer density of dislocations annealing X-ray diffraction
原文传递
High density dislocations enhance creep ageing response and mechanical properties in 2195 alloy sheet
9
作者 WEI Shuo MA Pei-pei +3 位作者 CHEN Long-hui YANG Jian-shi ZHAN Li-hua LIU Chun-hui 《Journal of Central South University》 SCIE EI CAS 2024年第7期2194-2209,共16页
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit... The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion. 展开更多
关键词 creep ageing Al-Cu-Li alloy high dislocation density cryogenic rolling dislocation strengthening
下载PDF
Effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging
10
作者 Wei Gu Jing-yuan Li Yi-de Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第7期721-728,共8页
The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatt... The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatter diffraction analysis of misorientation angle distribution, cumulative misorientation and geometrically necessary dislocation (GND) density. Experimental results indicate that coarse spindle-shaped grains with the dimension of 200 μm- 80 μm separate into fine equiaxed grains of 20μm in size as a result of newborn low-angle grain boundaries formed during the aging process. More specifically, the dislocation arrays, which are rearranged and formed due to scattered dislocations during earlier quenching, transform into low-angle grain boundaries with aging time. The relative frequency of 3°-5° low-angle grain boundaries increases to over 30%. The GND density, which describes low-angle grain boundaries with the misorientation angle under 3°, tends to decrease during initial aging. The inhomogeneous distribution of GNDs is affected by grain orientation. A decrease in GND density mainly occurs from 1.83 × 10^13 to 4.40 × 10^11 m^-2 in grains with 〈111〉 fiber texture. This is consistent with a decrease of unit cumulative misorientation. Precipitation on grain boundaries and the formation of a precipitation free zone (PFZ) are facilitated due to the eroding activity of the Graft etchant. Consequently, low-angle grain boundaries could be readily viewed by optical microscopy due to an increase in their electric potential difference. 展开更多
关键词 aluminum alloys low-angle grain boundaries dislocation structure AGING dislocation density
下载PDF
Dislocation characteristics and dynamic recrystallization in hot deformed AM30 and AZ31 alloys
11
作者 Hyeon-Woo Son Soong-Keun Hyun 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3495-3505,共11页
Zn addition to Mg alloys activates non-basal slip or twinning with solute softening effects.On the other hand,the effects of the Zn solute on the macroscopic dislocation behavior and dynamic recrystallization are not ... Zn addition to Mg alloys activates non-basal slip or twinning with solute softening effects.On the other hand,the effects of the Zn solute on the macroscopic dislocation behavior and dynamic recrystallization are not completely understood.Moreover,it is unclear ifslip can be affected by changes in the c/a ratio of solute atoms.This study was conducted to understand the solute strengthening of Zn addition and its effects on the dislocation characteristics and dynamic recrystallization.A hot torsion test was performed on both AM30 and AZ31 alloys up to a high strain to investigate the Zn solute effect on the dislocation characteristics and dynamic recrystallization.The dislocation components of the hot torsioned alloys were evaluated by X-ray line profile analysis and electron backscatter diffraction.The results showed that the Zn solutes slightly accelerate strain accumulation at the initial stages of hot deformation,which accelerated recrystallization at high strain.The dislocation characteristics were changed dynamically by Zn addition:fortified-type slip,dislocation arrangement and strain anisotropy parameters.The most important point was that the dislocation characteristics were changed dramatically at the critical strain for recrystallization and high strain regions.The addition of Zn also acted greatly in these strain areas.This indicates that the rapid formation of-type slip at the serrated grain boundaries occurs at the initiation of dynamic recrystallization and the increase in the grain triple junction because grain refinement has a great influence on the dislocation characteristics at high strain. 展开更多
关键词 Magnesium alloy X-ray line profile Solid solution dislocation density Dynamic recrystallization
下载PDF
The effect of dislocations on the thermodynamic properties of Ta single crystal under high pressure by molecular dynamics simulation
12
作者 李亚林 蔡军 +1 位作者 莫丹 王沿东 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期434-438,共5页
The thermodynamic properties of Ta metal under high pressure are studied by molecular dynamics simulation. For dislocation-free Ta crystal, all the thermodynamic properties considered are in good agreement with the re... The thermodynamic properties of Ta metal under high pressure are studied by molecular dynamics simulation. For dislocation-free Ta crystal, all the thermodynamic properties considered are in good agreement with the results from exper- iments or higher level calculations. If dislocations are included in the Ta crystal, it is found that as the dislocation density increases, the hydrostatic pressure at the phase transition point of bcc-+hcp and hcp--+fcc decreases, while the Hugoniot temperature increases. Meanwhile, the impact pressure at the elastic-plastic transition point is found to depend on the crys- tallographic orientation of the pressure. As the dislocation density increases, the pressure of the elastic-plastic transition point decreases rapidly at the initial stage, then gradually decreases with the increase of the dislocation density. 展开更多
关键词 Ta high pressure phase transition dislocation density molecular dynamics (MD)
下载PDF
A simple model for diffusion-induced dislocations during the lithiation of crystalline materials
13
作者 Fuqian Yang 《Theoretical & Applied Mechanics Letters》 CAS 2014年第5期9-12,共4页
Assuming that the lithiation reaction occurs randomly in individual small particles in the vicinity of the reaction front, a simple model of diffusion- induced dislocations was developed. The diffusion-induced disloca... Assuming that the lithiation reaction occurs randomly in individual small particles in the vicinity of the reaction front, a simple model of diffusion- induced dislocations was developed. The diffusion-induced dislocations are con- trolled by the misfit strain created by the diffusion of solute atoms or the phase transformation in the vicinity of the reaction front. The dislocation density is proportional to the total surface area of the "lithiated particle" and inversely pro- portional to the particle volume. The diffusion-induced dislocations relieve the diffusion-induced stresses. 展开更多
关键词 DIFFUSION misfit strain dislocation density LITHIATION
下载PDF
Pitting corrosion behavior and corrosion protection performance of cold sprayed double layered noble barrier coating on magnesium-based alloy in chloride containing solutions
14
作者 M.Daroonparvar A.Helmer +7 位作者 A.M.Ralls M.U.Farooq Khan A.K.Kasar R.K.Gupta M.Misra S.Shao P.L.Menezes N.Shamsaei 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3099-3119,共21页
Nitrogen processed, cold sprayed commercially pure(CP)-Al coatings on Mg-based alloys mostly lack acceptable hardness, wear resistance and most importantly are highly susceptible to localized corrosion in chloride con... Nitrogen processed, cold sprayed commercially pure(CP)-Al coatings on Mg-based alloys mostly lack acceptable hardness, wear resistance and most importantly are highly susceptible to localized corrosion in chloride containing solutions. In this research, commercially pure α-Ti top coating having good pitting potential(~1293 mV_(SCE)), high microhardness(HV_(0.025): 263.03) and low wear rate was applied on a CP-Al coated Mg-based alloy using high pressure cold spray technology. Potentiodynamic polarization(PDP) curves indicated that the probability of transition from metastable pits to the stable pits for cold spayed(CS) Al coating is considerably higher compared to that with the CS Ti top coating(for Ti/Al/Mg system). In addition, CS Ti top coating was in the passivation region in most pH ranges even after 48 h immersion in 3.5 wt% NaCl solution. The stored energy in the CS Ti top coating(as a passive metal) was presumed to be responsible for the easy passivation. Immersion tests indicated no obvious pits formation on the intact CS Ti top coating surface and revealed effective corrosion protection performance of the CS double layered noble barrier coatings on Mg alloys in 3.5 wt% NaCl solution even after 264 h. 展开更多
关键词 Ti coating Mg alloys Localized corrosion PASSIVITY dislocation density Crystallite size
下载PDF
Solute drag-controlled grain growth in magnesium investigated by quasi in-situ orientation mapping and level-set simulations
15
作者 Risheng Pei Yujun Zhao +2 位作者 Muhammad Zubair Sangbong Yi Talal Al-Samman 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2312-2325,共14页
Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grai... Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grain boundaries produce a pinning atmosphere that exerts a drag pressure on the boundary motion,which strongly affects the grain growth behavior during annealing.In the current work,the characteristics of grain growth in an annealed Mg-1 wt.%Mn-1 wt.%Nd magnesium alloy were investigated by advanced experimental and modeling techniques.Systematic quasi in-situ orientation mappings with a scanning electron microscope were performed to track the evolution of local and global microstructural characteristics as a function of annealing time.Solute segregation at targeted grain boundaries was measured using three-dimensional atom probe tomography.Level-set computer simulations were carried with different setups of driving forces to explore their contribution to the microstructure development with and without solute drag.The results showed that the favorable growth advantage for some grains leading to a transient stage of abnormal grain growth is controlled by several drivers with varying importance at different stages of annealing.For longer annealing times,residual dislocation density gradients between large and smaller grains are no longer important,which leads to microstructure stability due to predominant solute drag.Local fluctuations in residual dislocation energy and solute concentration near grain boundaries cause different boundary segments to migrate at different rates,which affects the average growth rate of large grains and their evolved shape. 展开更多
关键词 Magnesium alloys Grain growth Quasi in-situ EBSD Level-set simulation Solute drag dislocation density gradient
下载PDF
A set of microstructure-based constitutive equations in hot forming of a titanium alloy 被引量:3
16
作者 Xiaoli Li Miaoquan Li 《Journal of University of Science and Technology Beijing》 CSCD 2006年第5期435-441,共7页
A physical model of microstructure evolution including dislocation density rate and grain growth rate was established based on the deformation mechanism for the hot forming of a class of two-phase titanium alloys. Fur... A physical model of microstructure evolution including dislocation density rate and grain growth rate was established based on the deformation mechanism for the hot forming of a class of two-phase titanium alloys. Further, a set of mechanism-based constitutive equations were proposed, in which the microstructure variables such as grain size and dislocation density were taken as internal state variables for characterizing the current material state. In the set of constitutive equations, the contributions of different mechanisms and individual phase to the deformation behavior were analyzed. The present equations have been applied to describe a correlation of the flow stress with the microstructure evolution of the TC6 alloy in hot forming. 展开更多
关键词 titanium alloy constitutive equations microstructure evolution grain size dislocation density
下载PDF
Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation 被引量:2
17
作者 Fengkui CUI Yuanfei LING +3 位作者 Jinxue XUE Jia LIU Yuhui LIU Yan LI 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期321-331,共11页
The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructur... The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s^-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tis- sue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel. 展开更多
关键词 1020 steel Cold·beating Work hardening Grain dislocation density
下载PDF
Corrosion behavior of severely plastically deformed Mg and Mg alloys 被引量:1
18
作者 Ahmad Bahmani Mehrab Lotfpour +1 位作者 Milad Taghizadeh Woo-Jin Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2607-2648,共42页
Magnesium(Mg)alloys have several advantages,such as low density,high specific strength and biocompatibility.However,they also suffer weak points,such as high corrosion,low formability and easy ignition,which makes the... Magnesium(Mg)alloys have several advantages,such as low density,high specific strength and biocompatibility.However,they also suffer weak points,such as high corrosion,low formability and easy ignition,which makes their applications limited.Many studies have been conducted to overcome these disadvantages and further improve the advantages of Mg alloys.Severe plastic deformation(SPD)is one of the most important techniques and has great effects on the microstructure refinement of Mg alloys and improvements in their strength and formability.Several researchers have studied the corrosion behavior of SPD-processed Mg alloys in recent decades.However,these studies have reported some controversial effects of SPD on the corrosion of Mg alloys,which makes the research roadmap ambiguous.Therefore,it is important to review the literature related to the corrosion properties of Mg alloys prepared by SPD and understand the mechanisms controlling their corrosion behavior.Effective grain refinement by SPD improves the corrosion properties of pure Mg and Mg alloys,but control of the processing conditions is a key factor for achieving this goal because texture,dislocation density,size and morphology of secondary phase also importantly affects the corrosion properties of Mg alloys.Reduced grain size in the fine grain-size range can decrease the corrosion rate due to the increased barrier effect of grain boundaries against corrosion and the formation of a stable passivation layer on the surface of fine grains.Basal texture reduces the corrosion rate because basal planes with the highest atomic planar density are more corrosion resistant than other planes.Increased dislocation density after SPD deteriorates the corrosion resistance of the interior grains and thus proper annealing after SPD is important.The fine and uniform distribution of secondary phase particles during SPD is important to minimize the micro-galvanic corrosion effect and retain small grains during annealing treatment for removing dislocations. 展开更多
关键词 Magnesium alloys CORROSION Severe plastic deformation Grain size Secondary phase dislocation density
下载PDF
Mechanical properties of irradiated multi-phase polycrystalline BCC materials 被引量:4
19
作者 Dingkun Song Xiazi Xiao +2 位作者 Jianming Xue Haijian Chu Huiling Duan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第2期191-204,共14页
Structure materials under severe irradiations in nuclear environments are known to degrade because of irradiation hardening and loss of ductility,resulting from irradiation-induced defects such as vacancies,interstiti... Structure materials under severe irradiations in nuclear environments are known to degrade because of irradiation hardening and loss of ductility,resulting from irradiation-induced defects such as vacancies,interstitials and dislocation loops,etc.In this paper,we develop an elastic-viscoplastic model for irradiated multi-phase polycrystalline BCC materials in which the mechanical behaviors of individual grains and polycrystalline aggregates are both explored.At the microscopic grain scale,we use the internal variable model and propose a new tensorial damage descriptor to represent the geometry character of the defect loop,which facilitates the analysis of the defect loop evolutions and dislocation-defect interactions.At the macroscopic polycrystal scale,the self-consistent scheme is extended to consider the multiphase problem and used to bridge the individual grain behavior to polycrystal properties.Based on the proposed model,we found that the work-hardening coefficient decreases with the increase of irradiation-induced defect loops,and the orientation/loading dependence of mechanical properties is mainly attributed to the different Schmid factors.At the polycrystalline scale,numerical results for pure Fe match well with the irradiation experiment data.The model is further extended to predict the hardening effect of dispersoids in oxide-dispersed strengthened steels by the considering the Orowan bowing.The influences of grain size and irradiation are found to compete to dominate the strengthening behaviors of materials. 展开更多
关键词 Irradiation Self-consistent method Multi-phase polycrystal dislocation density
下载PDF
Incompatible deformation field and Riemann curvature tensor 被引量:1
20
作者 Bohua SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第3期311-332,共22页
Compatibility conditions of a deformation field in continuum mechanics have been revisited via two different routes. One is to use the deformation gradient, and the other is a pure geometric one. Variations of the dis... Compatibility conditions of a deformation field in continuum mechanics have been revisited via two different routes. One is to use the deformation gradient, and the other is a pure geometric one. Variations of the displacement vector and the displacement density tensor are obtained explicitly in terms of the Riemannian curvature tensor. The explicit relations reconfirm that the compatibility condition is equivalent to the vanishing of the Riemann curvature tensor and reveals the non-Euclidean nature of the space in which the dislocated continuum is imbedded. Comparisons with the theory of Kr¨oner and Le-Stumpf are provided. 展开更多
关键词 compatibility condition Riemann curvature tensor deformation gradient Burgers vector dislocation density tensor
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部