The effects of strain rate on the dislocation type and dislocation configure of TA15 alloy were investigated.The experimental results show that the operating dislocation type changes from c type to c and a+ c type wi...The effects of strain rate on the dislocation type and dislocation configure of TA15 alloy were investigated.The experimental results show that the operating dislocation type changes from c type to c and a+ c type with increasing strain rate under the deformation condition of 900℃,60% strain.Under the condition of 900℃,60% strain and 0.001/s strain rate,lots of orientate dislocation cellular configurations and sub-grains,many dislocations pile up before sub boundary.When the strain rate increases to 0.1/s,some dislocations exhibit curved and dislocation tangles and pile-ups can be found,suggesting more dislocations and much stronger interactions among dislocations.展开更多
Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely S...Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.展开更多
文摘The effects of strain rate on the dislocation type and dislocation configure of TA15 alloy were investigated.The experimental results show that the operating dislocation type changes from c type to c and a+ c type with increasing strain rate under the deformation condition of 900℃,60% strain.Under the condition of 900℃,60% strain and 0.001/s strain rate,lots of orientate dislocation cellular configurations and sub-grains,many dislocations pile up before sub boundary.When the strain rate increases to 0.1/s,some dislocations exhibit curved and dislocation tangles and pile-ups can be found,suggesting more dislocations and much stronger interactions among dislocations.
基金National Key Basic Research Development and Programming Project (2004CB418404) and Joint Seismological Science Foundation (105004).
文摘Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.