The hydrogenated amorphous silicon nitride (SiNx) thin films embedded with nano-structural silicon were prepared and the micro- structures at the interface of silicon nano-grains/SiNx were identified by the optical ...The hydrogenated amorphous silicon nitride (SiNx) thin films embedded with nano-structural silicon were prepared and the micro- structures at the interface of silicon nano-grains/SiNx were identified by the optical absorption and Raman scattering measurements. Characterized by the exponential tail of optical absorption and the band-width of the Raman scattering TO mode, the disorder in the interface region increases with the gas flow ratio increasing. Besides, as reflected by the sub-gap absorption coefficients, the density of interface defect states decreases, which can be attributed to the structural mismatch in the interface region and also the changes of hydrogen content in the deposited films. Additional annealing treatment results in a significant increase of defects and degree of disorder, for which the hydrogen out-diffusion in the annealing process would be responsible.展开更多
基金Natural Foundation of Hebei province, China (GE2004000119)
文摘The hydrogenated amorphous silicon nitride (SiNx) thin films embedded with nano-structural silicon were prepared and the micro- structures at the interface of silicon nano-grains/SiNx were identified by the optical absorption and Raman scattering measurements. Characterized by the exponential tail of optical absorption and the band-width of the Raman scattering TO mode, the disorder in the interface region increases with the gas flow ratio increasing. Besides, as reflected by the sub-gap absorption coefficients, the density of interface defect states decreases, which can be attributed to the structural mismatch in the interface region and also the changes of hydrogen content in the deposited films. Additional annealing treatment results in a significant increase of defects and degree of disorder, for which the hydrogen out-diffusion in the annealing process would be responsible.