期刊文献+
共找到3,318篇文章
< 1 2 166 >
每页显示 20 50 100
重复经颅磁刺激对育龄期前庭性偏头痛伴位置性眩晕患者疗效分析
1
作者 朱建建 张显军 +3 位作者 马霄 毛庆杰 孙培丽 范红梅 《中国耳鼻咽喉头颈外科》 CSCD 2024年第10期672-674,共3页
目的探讨重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)对育龄期前庭性偏头痛(vestibular migraine,VM)伴位置性眩晕的疗效。方法收集如皋市人民医院神经内科、耳鼻咽喉科门诊育龄期VM伴位置性眩晕患者57例,进行... 目的探讨重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)对育龄期前庭性偏头痛(vestibular migraine,VM)伴位置性眩晕的疗效。方法收集如皋市人民医院神经内科、耳鼻咽喉科门诊育龄期VM伴位置性眩晕患者57例,进行一般情况、量表评价。采用随机数字法分为rTMS组和对照组,所有患者均予以规范非甾体止痛药物、抗眩晕药物治疗,rTMS组给予低频(1 Hz)rTMS作用于枕叶。分别采用SRM-IV眩晕诊疗系统、眼震电图行位置试验、温度试验评估前庭功能,采用眩晕障碍量表(dizziness handicap inventory,DHI),头痛程度视觉模拟量表(VAS)以及头痛影响测评量表(headache impact test-6,HIT-6)对治疗前、治疗2周、治疗3个月疗效评估。结果育龄期VM伴位置性眩晕患者发病年龄23~49(38.72±7.93)岁,52.63%(30/57)患者以后半规管受累为主,33.33%(19/57)患者温度试验异常。组间比较,治疗2周时对照组情绪(DHI-E)优于rTMS组,治疗3个月时rTMS组VAS、HIT-6评分改善程度显著优于对照组(P<0.05),其余时间段VAS、HIT-6、DHI组间比较无统计学差异。组内比较,治疗2周、治疗3个月与治疗前比较,rTMS组和对照组VAS、HIT-6、DHI评分均有统计学差异;治疗3个月与治疗2周比较时,rTMS组除躯体(DHI-P)外其余各评价指标均有统计学差异,对照组仅HIT-6评分、DHI-P存在统计学差异。结论低频rTMS能有效改善VM伴位置性眩晕患者头痛症状,改善眩晕症状并不优于单纯口服药物,随治疗时间延长,rTMS对头痛及眩晕改善越明显。 展开更多
关键词 偏头痛(Migraine Disorders) 良性发作性位置性眩晕病(Benign Paroxysmal Positional Vertigo) 经颅磁刺激(Transcranial Magnetic Stimulation) 前庭性偏头痛(vestibular migraine) 量表(measuring scale)
下载PDF
Autophagy in neural stem cells and glia for brain health and diseases 被引量:3
2
作者 Aarti Nagayach Chenran Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期729-736,共8页
Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation,maturation,and surv... Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation,maturation,and survival.Autophagy facilities the utilization of energy and the microenvironment for developing neural stem cells.Autophagy arbitrates structural and functional remodeling during the cell differentiation process.Autophagy also plays an indispensable role in the maintenance of stemness and homeostasis in neural stem cells during essential brain physiology and also in the instigation and progression of diseases.Only recently,studies have begun to shed light on autophagy regulation in glia(microglia,astrocyte,and oligodendrocyte)in the brain.Glial cells have attained relatively less consideration despite their unquestioned influence on various aspects of neural development,synaptic function,brain metabolism,cellular debris clearing,and restoration of damaged or injured tissues.Thus,this review composes pertinent information regarding the involvement of autophagy in neural stem cells and glial regulation and the role of this connexion in normal brain functions,neurodevelopmental disorders,and neurodegenerative diseases.This review will provide insight into establishing a concrete strategic approach for investigating pathological mechanisms and developing therapies for brain diseases. 展开更多
关键词 ASTROCYTE AUTOPHAGY GLIA MICROGLIA neural stem cells neurodegenerative diseases neurodevelopmental disorders OLIGODENDROCYTE
下载PDF
Adverse effects of early-life stress:focus on the rodent neuroendocrine system 被引量:3
3
作者 Seung Hyun Lee Eui-Man Jung 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期336-341,共6页
Early-life stress is associated with a high prevalence of mental illnesses such as post-traumatic stress disorders,attention-deficit/hyperactivity disorder,schizophrenia,and anxiety or depressive behavior,which consti... Early-life stress is associated with a high prevalence of mental illnesses such as post-traumatic stress disorders,attention-deficit/hyperactivity disorder,schizophrenia,and anxiety or depressive behavior,which constitute major public health problems.In the early stages of brain development after birth,events such as synaptogenesis,neuron maturation,and glial differentiation occur in a highly orchestrated manner,and external stress can cause adverse long-term effects throughout life.Our body utilizes multifaceted mechanisms,including neuroendocrine and neurotransmitter signaling pathways,to appropriately process external stress.Newborn individuals first exposed to early-life stress deploy neurogenesis as a stress-defense mechanism;however,in adulthood,early-life stress induces apoptosis of mature neurons,activation of immune responses,and reduction of neurotrophic factors,leading to anxiety,depression,and cognitive and memory dysfunction.This process involves the hypothalamus-pituitary-adrenal axis and neurotransmitters secreted by the central nervous system,including norepinephrine,dopamine,and serotonin.The rodent early-life stress model is generally used to experimentally assess the effects of stress during neurodevelopment.This paper reviews the use of the early-life stress model and stress response mechanisms of the body and discusses the experimental results regarding how early-life stress mediates stress-related pathways at a high vulnerability of psychiatric disorder in adulthood. 展开更多
关键词 early-life stress hypothalamic-pituitary-adrenergic axis maternal separation mental illness neurodevelopmental disorder neuroendocrine system NEUROTRANSMITTER
下载PDF
Olfactory dysfunction and its related molecular mechanisms in Parkinson’s disease 被引量:3
4
作者 Yingying Gu Jiaying Zhang +4 位作者 Xinru Zhao Wenyuan Nie Xiaole Xu Mingxuan Liu Xiaoling Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期583-590,共8页
Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients wit... Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients with early-stage Parkinson’s disease,and can often predate the diagnosis by years.Therefore,olfactory dysfunction should be considered a reliable marker of the disease.However,the mechanisms responsible for olfactory dysfunction are currently unknown.In this article,we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson’s disease.On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels,we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson’s disease.The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson’s disease.Therefore,therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson’s disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms,highlighting the potential of identifying effective targets for treating Parkinson’s disease by inhibiting the deterioration of olfactory dysfunction. 展开更多
关键词 BIOMARKER EARLY-STAGE olfactory disorders olfactory dysfunction Parkinson’s disease
下载PDF
Lactate:a prospective target for therapeutic intervention in psychiatric disease 被引量:2
5
作者 Yanhui Cai Haiyun Guo +1 位作者 Tianle Han Huaning Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1473-1479,共7页
Although antipsychotics that act via monoaminergic neurotransmitter modulation have considera ble therapeutic effect,they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorde rs.T... Although antipsychotics that act via monoaminergic neurotransmitter modulation have considera ble therapeutic effect,they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorde rs.This may be attributed to the limited range of neurotransmitters that are regulated by psychotropic drugs.Recent findings indicate the need for investigation of psychotropic medications that target less-studied neurotransmitte rs.Among these candidate neurotransmitters,lactate is developing from being a waste metabolite to a glial-neuronal signaling molecule in recent years.Previous studies have suggested that cerebral lactate levels change considerably in numerous psychiatric illnesses;animal experiments have also shown that the supply of exogenous la ctate exerts an antidepressant effect.In this review,we have described how medications targeting newer neurotransmitte rs offer promise in psychiatric diseases;we have also summarized the advances in the use of lactate(and its corresponding signaling pathways)as a signaling molecule.In addition,we have described the alterations in brain lactate levels in depression,anxiety,bipolar disorder,and schizophrenia and have indicated the challenges that need to be overcome before brain lactate can be used as a therapeutic target in psychopharmacology. 展开更多
关键词 ANTIDEPRESSANT ANXIETY bipolar disorder depression LACTATE psychiatric disease PSYCHOPHARMACOLOGY SCHIZOPHRENIA signal molecular THERAPEUTICS
下载PDF
Biomarkers for neuromyelitis optica:a visual analysis of emerging research trends 被引量:3
6
作者 Xiangjun Li Jiandong Zhang +4 位作者 Siqi Zhang Shengling Shi Yi’an Lu Ying Leng Chunyan Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2735-2749,共15页
Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis.Over the past 20 years,the search for biomarke rs for neuromyelitis optica has been ongo... Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis.Over the past 20 years,the search for biomarke rs for neuromyelitis optica has been ongoing.Here,we used a bibliometric approach to analyze the main research focus in the field of biomarkers for neuromyelitis optica.Research in this area is consistently increasing,with China and the United States leading the way on the number of studies conducted.The Mayo Clinic is a highly reputable institution in the United States,and was identified as the most authoritative institution in this field.Furthermore,Professor Wingerchuk from the Mayo Clinic was the most authoritative expe rt in this field.Keyword analysis revealed that the terms "neuro myelitis optica"(261 times), "multiple sclerosis"(220 times), "neuromyelitis optica spectrum disorder"(132 times), "aquaporin4"(99 times),and "optical neuritis"(87 times) were the most frequently used keywords in literature related to this field.Comprehensive analysis of the classical literature showed that the majority of publications provide conclusive research evidence supporting the use of aquaporin-4-IgG and neuromyelitis optica-IgG to effectively diagnose and differentiate neuromyelitis optica from multiple sclerosis.Furthermore,aquaporin-4-IgG has emerged as a highly specific diagnostic biomarker for neuromyelitis optica spectrum disorder.Myelin oligodendrocyte glycoprotein-IgG is a diagnostic biomarke r for myelin oligodendrocyte glycoprotein antibody-associated disease.Recent biomarkers for neuromyelitis optica in clude cerebrospinal fluid immunological biomarkers such as glial fibrillary acidic protein,serum astrocyte damage biomarkers like FAM19A5,serum albumin,and gammaaminobutyric acid.The latest prospective clinical trials are exploring the potential of these biomarkers.Preliminary results indicate that glial fibrillary acidic protein is emerging as a promising candidate biomarker for neuromyelitis optica spectrum disorder.The ultimate goal of future research is to identify non-invasive biomarkers with high sensitivity,specificity,and safety for the accurate diagnosis of neuro myelitis optica. 展开更多
关键词 AQUAPORIN-4 AUTOANTIBODY multiple sclerosis myelin oligodendrocyte glycoprotein antibody-associated disease neuromyelitis optica neuromyelitis optica spectrum disorder optical coherence tomography
下载PDF
Latest assessment methods for mitochondrial homeostasis in cognitive diseases 被引量:2
7
作者 Wei You Yue Li +4 位作者 Kaixi Liu Xinning Mi Yitong Li Xiangyang Guo Zhengqian Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期754-768,共15页
Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,sub... Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,subcellular distribution,and overall health through mitochondrial dynamics.Given the recent technological advances in the assessment of mitochondrial structure and functions,mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer’s disease,Parkinson’s disease,Huntington’s disease,mild cognitive impairment,and postoperative cognitive dysfunction.This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences,from the perspectives of energy metabolism,oxidative stress,calcium homeostasis,and mitochondrial dynamics(including fission-fusion,transport,and mitophagy). 展开更多
关键词 cognitive disorders mitochondrial dysfunction mitochondrial energy metabolism mitochondrial dynamics mitochondrial transport MITOPHAGY mitochondrial biogenesis oxidative stress calcium homeostasis
下载PDF
Transcriptional regulation in the development and dysfunction of neocortical projection neurons 被引量:1
8
作者 Ningxin Wang Rong Wan Ke Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期246-254,共9页
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord... Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations. 展开更多
关键词 autism spectrum disorders COGNITION DIFFERENTIATION excitatory circuits intellectual disability NEOCORTEX neurodevelopmental disorders projection neuron specification transcriptional regulation
下载PDF
Connecting neurodevelopment to neurodegeneration:a spotlight on the role of kinesin superfamily protein 2A(KIF2A) 被引量:1
9
作者 Nuria Ruiz-Reig Janne Hakanen Fadel Tissir 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期375-379,共5页
Microtubules play a central role in cytoskeletal changes during neuronal development and maintenance.Microtubule dynamics is essential to polarity and shape transitions underlying neural cell division,differentiation,... Microtubules play a central role in cytoskeletal changes during neuronal development and maintenance.Microtubule dynamics is essential to polarity and shape transitions underlying neural cell division,differentiation,motility,and maturation.Kinesin superfamily protein 2A is a member of human kinesin 13 gene family of proteins that depolymerize and destabilize microtubules.In dividing cells,kinesin superfamily protein 2A is involved in mitotic progression,spindle assembly,and chromosome segregation.In postmitotic neurons,it is required for axon/dendrite specification and extension,neuronal migration,connectivity,and survival.Humans with kinesin superfamily protein 2A mutations suffer from a variety of malformations of cortical development,epilepsy,autism spectrum disorder,and neurodegeneration.In this review,we discuss how kinesin superfamily protein 2A regulates neuronal development and function,and how its deregulation causes neurodevelopmental and neurological disorders. 展开更多
关键词 brain disorders cortical malformations KINESIN MICROTUBULES NEURODEGENERATION NEURODEVELOPMENT
下载PDF
Type-B monoamine oxidase inhibitors in neurological diseases:clinical applications based on preclinical findings 被引量:2
10
作者 Marika Alborghetti Edoardo Bianchini +3 位作者 Lanfranco De Carolis Silvia Galli Francesco E.Pontieri Domiziana Rinaldi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期16-21,共6页
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ... Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications. 展开更多
关键词 glial cell line-derived neurotrophic factor(GDNF) GLUTAMATE neurological disorders NEUROPROTECTION Parkinson's disease preclinical studies RASAGILINE SAFINAMIDE SELEGILINE type-B monoamine oxidase(MAO_(B))inhibitors
下载PDF
Exercise-with-melatonin therapy improves sleep disorder and motor dysfunction in a rat model of ischemic stroke 被引量:1
11
作者 Haitao Zhao Tong Zhang +2 位作者 Haojie Zhang Yunlei Wang Lingna Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1336-1343,共8页
Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer's disease,but its effect on stroke is still poorly understood.In this study,we established a rat model ... Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer's disease,but its effect on stroke is still poorly understood.In this study,we established a rat model of ischemic stroke by occluding the middle cerebral artery for 60 minutes.We treated the rats with exercise and melatonin therapy for 7 consecutive days.Results showed that exercise-with-melatonin therapy significantly prolonged sleep duration in the model rats,increased delta power values,and regularized delta power rhythm.Additionally,exercise-with-melatonin therapy improved coordination,endurance,and grip strength,as well as learning and memory abilities.At the same time,it led to higher hippocampal CA1 neuron activity and postsynaptic density thickness and lower expression of glutamate receptor 2 than did exercise or melatonin therapy alone.These findings suggest that exercise-withmelatonin therapy can alleviate sleep disorder and motor dysfunction by increasing glutamate receptor 2 protein expression and regulating hippocampal CA1 synaptic plasticity. 展开更多
关键词 EXERCISE glutamate receptor 2 HIPPOCAMPUS ischemic stroke learning MELATONIN memory sleep disorder synaptic plasticity
下载PDF
Notch信号通路——对健康和疾病的机械论观点 被引量:1
12
作者 Yao Meng Zhihan Bo +2 位作者 Xinyi Feng Xinyi Yang Penny A.Handford 《Engineering》 SCIE EI CAS CSCD 2024年第3期212-232,共21页
The Notch signaling pathway is evolutionarily conserved across metazoan species and plays key roles in many physiological processes.The Notch receptor is activated by two families of canonical ligands(Deltalike and Se... The Notch signaling pathway is evolutionarily conserved across metazoan species and plays key roles in many physiological processes.The Notch receptor is activated by two families of canonical ligands(Deltalike and Serrate/Jagged)where both ligands and receptors are single-pass transmembrane proteins usually with large extracellular domains,relative to their intracellular portions.Upon interaction of the core binding regions,presented on opposing cell surfaces,formation of the receptor/ligand complex initiates force-mediated proteolysis,ultimately releasing the transcriptionally-active Notch intracellular domain.This review focuses on structural features of the extracellular receptor/ligand complex,the role of posttranslational modifications in tuning this complex,the contribution of the cell membrane to ligand function,and insights from acquired and genetic diseases. 展开更多
关键词 Notch signaling pathway Structural biology GLYCOSYLATION Genetic disorders CANCER Pharmacological agents
下载PDF
Genetic pathways in cerebral palsy:a review of the implications for precision diagnosis and understanding disease mechanisms 被引量:1
13
作者 Yiran Xu Yifei Li +2 位作者 Seidu A.Richard Yanyan Sun Changlian Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1499-1508,共10页
Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progre... Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progressive disturbances in the fetal or neonatal brain.These disturbances severely impact the child’s daily life and impose a substantial economic burden on the family.Although cerebral palsy encompasses various brain injuries leading to similar clinical outcomes,the unde rstanding of its etiological pathways remains incomplete owing to its complexity and heterogeneity.This review aims to summarize the current knowledge on the genetic factors influencing cerebral palsy development.It is now widely acknowledged that genetic mutations and alterations play a pivotal role in cerebral palsy development,which can be further influenced by environmental fa ctors.Des pite continuous research endeavors,the underlying fa ctors contributing to cerebral palsy remain are still elusive.However,significant progress has been made in genetic research that has markedly enhanced our comprehension of the genetic factors underlying cerebral palsy development.Moreove r,these genetic factors have been categorized based on the identified gene mutations in patients through clinical genotyping,including thrombosis,angiogenesis,mitochondrial and oxidative phosphorylation function,neuronal migration,and cellular autophagy.Furthermore,exploring targeted genotypes holds potential for precision treatment.In conclusion,advancements in genetic research have substantially improved our understanding of the genetic causes underlying cerebral palsy.These breakthroughs have the potential to pave the way for new treatments and therapies,consequently shaping the future of cerebral palsy research and its clinical management.The investigation of cerebral palsy genetics holds the potential to significantly advance treatments and management strategies.By elucidating the underlying cellular mechanisms,we can develop to rgeted interventions to optimize outcomes.A continued collaboration between researchers and clinicians is imperative to comprehensively unravel the intricate genetic etiology of cerebral palsy. 展开更多
关键词 cerebral palsy environmental factors ETIOLOGY genetic factors genetic mutation movement disorder spastic diplegia
下载PDF
Next-generation vaccines for substance use disorders 被引量:1
14
作者 Kaixuan Wang Hongshuang Wang Xiaohui Wang 《Zoological Research》 SCIE CSCD 2024年第3期707-708,共2页
Substance use disorders(SUDs)impact an estimated 300 million people worldwide,significantly impairing both health and social functioning.These disorders are marked by an inability to regulate substance use,despite the... Substance use disorders(SUDs)impact an estimated 300 million people worldwide,significantly impairing both health and social functioning.These disorders are marked by an inability to regulate substance use,despite the harmful consequences.Addiction affects various neurotransmitter systems,including dopamine,serotonin,γ-aminobutyric acid(GABA),and glutamate,each of which plays a role in the reward,stress,and self-control pathways of the brain(Koob&Volkow,2016).While significant advances have been made in neuroscience,our understanding of how these neurotransmitter systems interact and contribute to addiction is still evolving.This knowledge gap represents a significant challenge in the formulation of effective treatments for SUDs.At present,the US Food and Drug Administration(FDA)has approved pharmacological treatments for alcohol,nicotine,and opioid use disorders(Vasiliu,2022);however,no such treatments have been authorized for SUDs in general,or specifically for stimulant use disorders,such as cocaine and methamphetamine addiction.Notably,the FDA has not approved any new drugs for SUD treatment in the past 40 years. 展开更多
关键词 DISORDERS TREATMENT consequences
下载PDF
General anesthetic agents induce neurotoxicity through oligodendrocytes in the developing brain 被引量:1
15
作者 Wen-Xin Hang Yan-Chang Yang +7 位作者 Yu-Han Hu Fu-Quan Fang Lang Wang Xing-Hua Qian Patrick M.McQuillan Hui Xiong Jian-Hang Leng Zhi-Yong Hu 《Zoological Research》 SCIE CSCD 2024年第3期691-703,共13页
General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath for... General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath formation,axonal metabolism,and neuroplasticity regulation.They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation,differentiation,and apoptosis.Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes.These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways,but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function.In this review,we summarize the effects of general anesthetic agents on oligodendrocytes.We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents. 展开更多
关键词 OLIGODENDROCYTES General anesthetic agents NEUROTOXICITY Central nervous system Perioperative neurocognitive disorders
下载PDF
PCDH17 restricts dendritic spine morphogenesis by regulating ROCK2-dependent control of the actin cytoskeleton,modulating emotional behavior 被引量:1
16
作者 Laidong Yu Fangfang Zeng +14 位作者 Mengshu Fan Kexuan Zhang Jingjing Duan Yalu Tan Panlin Liao Jin Wen Chenyu Wang Meilin Wang Jialong Yuan Xinxin Pang Yan Huang Yangzhou Zhang Jia-Da Li Zhuohua Zhang Zhonghua Hu 《Zoological Research》 SCIE CSCD 2024年第3期535-550,共16页
Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of posts... Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders. 展开更多
关键词 Synapse development Dendritic spine Mood disorder Actin cytoskeleton Animal behavior
下载PDF
Mental emotional disorder is a predictor of stroke incidence in adults:Ten year results of the Bogor Cohort Study on Non-Communicable Disease Risk Factors in Indonesia 被引量:1
17
作者 Woro Riyadina Alifa Syamantha Putri +2 位作者 Sulistyowati Tuminah Ika Suswanti Yuda Turana 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2024年第8期351-357,共7页
Objective:To determine the stroke predictors for the 10-year of follow-up in Bogor City,Indonesia.Methods:The prospective study analyzed the data of 4445 stroke-free subjects aged 25 years and above that was part of&q... Objective:To determine the stroke predictors for the 10-year of follow-up in Bogor City,Indonesia.Methods:The prospective study analyzed the data of 4445 stroke-free subjects aged 25 years and above that was part of"the Bogor Cohort Study on Non-Communicable Disease Risk Factors".Data were collected by interview method with structured questionnaires,physical measurements three times a year,and laboratory examination every two years during a 10-year follow-up(2011-2021,without examination in 2020).The incidence of stroke is based on anamnesis results and examination by a neurologist.Other stroke predictor variables include characteristics,biological conditions,and risk behavior.We analysed 4445 stroke-free samples with Cox proportional hazard regression test.Results:During the 10-year observation,stroke incidence was 440 person-years per 100000 population(95%CI 370-530).During the follow-up of ten years,the main predictor of stroke was mental-emotional disorders with HR 4.2(95%CI 2.8-6.3)after adjustment by age,hypertension,obesity,abdominal obesity,and high LDL-cholesterol levels.Conclusions:Mental-emotional disorders are the strongest predictor of stroke incidence.Hence,psychological factors must be controlled in a stroke prevention program. 展开更多
关键词 ADULT COHORT Mental-emotional disorder Stroke predictor
下载PDF
Understanding the spectrum of non-motor symptoms in multiple sclerosis:insights from animal models 被引量:1
18
作者 Poornima D.E.Weerasinghe-Mudiyanselage Joong-Sun Kim +1 位作者 Taekyun Shin Changjong Moon 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期84-91,共8页
Multiple sclerosis is a chronic autoimmune disease of the central nervous system and is generally considered to be a non-traumatic,physically debilitating neurological disorder.In addition to experiencing motor disabi... Multiple sclerosis is a chronic autoimmune disease of the central nervous system and is generally considered to be a non-traumatic,physically debilitating neurological disorder.In addition to experiencing motor disability,patients with multiple sclerosis also experience a variety of nonmotor symptoms,including cognitive deficits,anxiety,depression,sensory impairments,and pain.However,the pathogenesis and treatment of such non-motor symptoms in multiple scle rosis are still under research.Preclinical studies for multiple sclerosis benefit from the use of disease-appropriate animal models,including experimental autoimmune encephalomyelitis.Prior to understanding the pathophysiology and developing treatments for non-motor symptoms,it is critical to chara cterize the animal model in terms of its ability to replicate certain non-motor features of multiple sclerosis.As such,no single animal model can mimic the entire spectrum of symptoms.This review focuses on the non-motor symptoms that have been investigated in animal models of multiple sclerosis as well as possible underlying mechanisms.Further,we highlighted gaps in the literature to explain the nonmotor aspects of multiple sclerosis in expe rimental animal models,which will serve as the basis for future studies. 展开更多
关键词 ANXIETY cognitive deficit DEPRESSION experimental autoimmune encephalomyelitis motor disability neurological disorder PAIN PATHOPHYSIOLOGY preclinical study sensory impairments
下载PDF
Exploring the influences of education,intelligence and income on mental disorders 被引量:1
19
作者 Ancha Baranova Hongbao Cao Fuquan Zhan 《General Psychiatry》 CSCD 2024年第1期64-72,共9页
Background Previous studies have shown that educational attainment(EA),intelligence and income are key factors associated with mental disorders.However,the direct effects of each factor on major mental disorders are u... Background Previous studies have shown that educational attainment(EA),intelligence and income are key factors associated with mental disorders.However,the direct effects of each factor on major mental disorders are unclear.Aims We aimed to evaluate the overall and independent causal effects of the three psychosocial factors on common mental disorders.Methods Using genome-wide association study summary datasets,we performed Mendelian randomisation(MR)and multivariable MR(MVMR)analyses to assess potential associations between the 3 factors(EA,N=766345;household income,N=392422;intelligence,N=146808)and 13 common mental disorders,with sample sizes ranging from 9907 to 807553.Inverse-variance weighting was employed as the main method in the MR analysis.Results Our MR analysis showed that(1)higher EA was a protective factor for eight mental disorders but contributed to anorexia nervosa,obsessive-compulsive disorder(OCD),bipolar disorder(BD)and autism spectrum disorder(ASD);(2)higher intelligence was a protective factor for five mental disorders but a risk factor for OCD and ASD;(3)higher household income protected against 10 mental disorders but confers risk for anorexia nervosa.Our MVMR analysis showed that(1)higher EA was a direct protective factor for attention-deficit/hyperactivity disorder(ADHD)and insomnia but a direct risk factor for schizophrenia,BD and ASD;(2)higher intelligence was a direct protective factor for schizophrenia but a direct risk factor for major depressive disorder(MDD)and ASD;(3)higher income was a direct protective factor for seven mental disorders,including schizophrenia,BD,MDD,ASD,post-traumatic stress disorder,ADHD and anxiety disorder.Conclusions Our study reveals that education,intelligence and income intertwine with each other.For each factor,its independent effects on mental disorders present a more complex picture than its overall effects. 展开更多
关键词 protective DISORDERS INCOME
下载PDF
K^(+) channel-mediated retarded maturation of interneurons and its role in neurodevelopmental disorders 被引量:1
20
作者 Kaizhen Li Daria Savitska Olga Garaschuk 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1403-1404,共2页
De novo mutations in genes encoding K^(+)channels are implicated in many severe neurodevelopmental disorders.Specifically,mutations in KCNA2,encoding the Shaker-type voltage-gated K^(+)channel Kv1.2,and KCNJ2,encoding... De novo mutations in genes encoding K^(+)channels are implicated in many severe neurodevelopmental disorders.Specifically,mutations in KCNA2,encoding the Shaker-type voltage-gated K^(+)channel Kv1.2,and KCNJ2,encoding the inwardly rectifying K^(+)channel Kir2.1,associate with focal and generalized epilepsies,brain atrophy,autism,ataxia and hereditary spastic paraplegia(Syrbe et al.,2015;Masnada et al.,2017;Cheng et al.,2021). 展开更多
关键词 DISORDERS ATROPHY
下载PDF
上一页 1 2 166 下一页 到第
使用帮助 返回顶部