期刊文献+
共找到2,885篇文章
< 1 2 145 >
每页显示 20 50 100
Lactate:a prospective target for therapeutic intervention in psychiatric disease 被引量:2
1
作者 Yanhui Cai Haiyun Guo +1 位作者 Tianle Han Huaning Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1473-1479,共7页
Although antipsychotics that act via monoaminergic neurotransmitter modulation have considera ble therapeutic effect,they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorde rs.T... Although antipsychotics that act via monoaminergic neurotransmitter modulation have considera ble therapeutic effect,they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorde rs.This may be attributed to the limited range of neurotransmitters that are regulated by psychotropic drugs.Recent findings indicate the need for investigation of psychotropic medications that target less-studied neurotransmitte rs.Among these candidate neurotransmitters,lactate is developing from being a waste metabolite to a glial-neuronal signaling molecule in recent years.Previous studies have suggested that cerebral lactate levels change considerably in numerous psychiatric illnesses;animal experiments have also shown that the supply of exogenous la ctate exerts an antidepressant effect.In this review,we have described how medications targeting newer neurotransmitte rs offer promise in psychiatric diseases;we have also summarized the advances in the use of lactate(and its corresponding signaling pathways)as a signaling molecule.In addition,we have described the alterations in brain lactate levels in depression,anxiety,bipolar disorder,and schizophrenia and have indicated the challenges that need to be overcome before brain lactate can be used as a therapeutic target in psychopharmacology. 展开更多
关键词 ANTIDEPRESSANT ANXIETY bipolar disorder depression LACTATE psychiatric disease PSYCHOPHARMACOLOGY SCHIZOPHRENIA signal molecular THERAPEUTICS
下载PDF
Transcriptional regulation in the development and dysfunction of neocortical projection neurons 被引量:1
2
作者 Ningxin Wang Rong Wan Ke Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期246-254,共9页
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord... Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations. 展开更多
关键词 autism spectrum disorders COGNITION DIFFERENTIATION excitatory circuits intellectual disability NEOCORTEX neurodevelopmental disorders projection neuron specification transcriptional regulation
下载PDF
Connecting neurodevelopment to neurodegeneration:a spotlight on the role of kinesin superfamily protein 2A(KIF2A) 被引量:1
3
作者 Nuria Ruiz-Reig Janne Hakanen Fadel Tissir 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期375-379,共5页
Microtubules play a central role in cytoskeletal changes during neuronal development and maintenance.Microtubule dynamics is essential to polarity and shape transitions underlying neural cell division,differentiation,... Microtubules play a central role in cytoskeletal changes during neuronal development and maintenance.Microtubule dynamics is essential to polarity and shape transitions underlying neural cell division,differentiation,motility,and maturation.Kinesin superfamily protein 2A is a member of human kinesin 13 gene family of proteins that depolymerize and destabilize microtubules.In dividing cells,kinesin superfamily protein 2A is involved in mitotic progression,spindle assembly,and chromosome segregation.In postmitotic neurons,it is required for axon/dendrite specification and extension,neuronal migration,connectivity,and survival.Humans with kinesin superfamily protein 2A mutations suffer from a variety of malformations of cortical development,epilepsy,autism spectrum disorder,and neurodegeneration.In this review,we discuss how kinesin superfamily protein 2A regulates neuronal development and function,and how its deregulation causes neurodevelopmental and neurological disorders. 展开更多
关键词 brain disorders cortical malformations KINESIN MICROTUBULES NEURODEGENERATION NEURODEVELOPMENT
下载PDF
Autophagy in neural stem cells and glia for brain health and diseases 被引量:1
4
作者 Aarti Nagayach Chenran Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期729-736,共8页
Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation,maturation,and surv... Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation,maturation,and survival.Autophagy facilities the utilization of energy and the microenvironment for developing neural stem cells.Autophagy arbitrates structural and functional remodeling during the cell differentiation process.Autophagy also plays an indispensable role in the maintenance of stemness and homeostasis in neural stem cells during essential brain physiology and also in the instigation and progression of diseases.Only recently,studies have begun to shed light on autophagy regulation in glia(microglia,astrocyte,and oligodendrocyte)in the brain.Glial cells have attained relatively less consideration despite their unquestioned influence on various aspects of neural development,synaptic function,brain metabolism,cellular debris clearing,and restoration of damaged or injured tissues.Thus,this review composes pertinent information regarding the involvement of autophagy in neural stem cells and glial regulation and the role of this connexion in normal brain functions,neurodevelopmental disorders,and neurodegenerative diseases.This review will provide insight into establishing a concrete strategic approach for investigating pathological mechanisms and developing therapies for brain diseases. 展开更多
关键词 ASTROCYTE AUTOPHAGY GLIA MICROGLIA neural stem cells neurodegenerative diseases neurodevelopmental disorders OLIGODENDROCYTE
下载PDF
Olfactory dysfunction and its related molecular mechanisms in Parkinson’s disease 被引量:1
5
作者 Yingying Gu Jiaying Zhang +4 位作者 Xinru Zhao Wenyuan Nie Xiaole Xu Mingxuan Liu Xiaoling Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期583-590,共8页
Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients wit... Changes in olfactory function are considered to be early biomarkers of Parkinson’s disease.Olfactory dysfunction is one of the earliest non-motor features of Parkinson’s disease,appearing in about 90%of patients with early-stage Parkinson’s disease,and can often predate the diagnosis by years.Therefore,olfactory dysfunction should be considered a reliable marker of the disease.However,the mechanisms responsible for olfactory dysfunction are currently unknown.In this article,we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson’s disease.On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels,we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson’s disease.The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson’s disease.Therefore,therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson’s disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms,highlighting the potential of identifying effective targets for treating Parkinson’s disease by inhibiting the deterioration of olfactory dysfunction. 展开更多
关键词 BIOMARKER EARLY-STAGE olfactory disorders olfactory dysfunction Parkinson’s disease
下载PDF
Notch信号通路——对健康和疾病的机械论观点 被引量:1
6
作者 Yao Meng Zhihan Bo +2 位作者 Xinyi Feng Xinyi Yang Penny A.Handford 《Engineering》 SCIE EI CAS CSCD 2024年第3期212-232,共21页
The Notch signaling pathway is evolutionarily conserved across metazoan species and plays key roles in many physiological processes.The Notch receptor is activated by two families of canonical ligands(Deltalike and Se... The Notch signaling pathway is evolutionarily conserved across metazoan species and plays key roles in many physiological processes.The Notch receptor is activated by two families of canonical ligands(Deltalike and Serrate/Jagged)where both ligands and receptors are single-pass transmembrane proteins usually with large extracellular domains,relative to their intracellular portions.Upon interaction of the core binding regions,presented on opposing cell surfaces,formation of the receptor/ligand complex initiates force-mediated proteolysis,ultimately releasing the transcriptionally-active Notch intracellular domain.This review focuses on structural features of the extracellular receptor/ligand complex,the role of posttranslational modifications in tuning this complex,the contribution of the cell membrane to ligand function,and insights from acquired and genetic diseases. 展开更多
关键词 Notch signaling pathway Structural biology GLYCOSYLATION Genetic disorders CANCER Pharmacological agents
下载PDF
Next-generation vaccines for substance use disorders 被引量:1
7
作者 Kaixuan Wang Hongshuang Wang Xiaohui Wang 《Zoological Research》 SCIE CSCD 2024年第3期707-708,共2页
Substance use disorders(SUDs)impact an estimated 300 million people worldwide,significantly impairing both health and social functioning.These disorders are marked by an inability to regulate substance use,despite the... Substance use disorders(SUDs)impact an estimated 300 million people worldwide,significantly impairing both health and social functioning.These disorders are marked by an inability to regulate substance use,despite the harmful consequences.Addiction affects various neurotransmitter systems,including dopamine,serotonin,γ-aminobutyric acid(GABA),and glutamate,each of which plays a role in the reward,stress,and self-control pathways of the brain(Koob&Volkow,2016).While significant advances have been made in neuroscience,our understanding of how these neurotransmitter systems interact and contribute to addiction is still evolving.This knowledge gap represents a significant challenge in the formulation of effective treatments for SUDs.At present,the US Food and Drug Administration(FDA)has approved pharmacological treatments for alcohol,nicotine,and opioid use disorders(Vasiliu,2022);however,no such treatments have been authorized for SUDs in general,or specifically for stimulant use disorders,such as cocaine and methamphetamine addiction.Notably,the FDA has not approved any new drugs for SUD treatment in the past 40 years. 展开更多
关键词 DISORDERS TREATMENT consequences
下载PDF
General anesthetic agents induce neurotoxicity through oligodendrocytes in the developing brain 被引量:1
8
作者 Wen-Xin Hang Yan-Chang Yang +7 位作者 Yu-Han Hu Fu-Quan Fang Lang Wang Xing-Hua Qian Patrick M.McQuillan Hui Xiong Jian-Hang Leng Zhi-Yong Hu 《Zoological Research》 SCIE CSCD 2024年第3期691-703,共13页
General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath for... General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath formation,axonal metabolism,and neuroplasticity regulation.They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation,differentiation,and apoptosis.Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes.These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways,but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function.In this review,we summarize the effects of general anesthetic agents on oligodendrocytes.We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents. 展开更多
关键词 OLIGODENDROCYTES General anesthetic agents NEUROTOXICITY Central nervous system Perioperative neurocognitive disorders
下载PDF
Understanding the spectrum of non-motor symptoms in multiple sclerosis:insights from animal models 被引量:1
9
作者 Poornima D.E.Weerasinghe-Mudiyanselage Joong-Sun Kim +1 位作者 Taekyun Shin Changjong Moon 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期84-91,共8页
Multiple sclerosis is a chronic autoimmune disease of the central nervous system and is generally considered to be a non-traumatic,physically debilitating neurological disorder.In addition to experiencing motor disabi... Multiple sclerosis is a chronic autoimmune disease of the central nervous system and is generally considered to be a non-traumatic,physically debilitating neurological disorder.In addition to experiencing motor disability,patients with multiple sclerosis also experience a variety of nonmotor symptoms,including cognitive deficits,anxiety,depression,sensory impairments,and pain.However,the pathogenesis and treatment of such non-motor symptoms in multiple scle rosis are still under research.Preclinical studies for multiple sclerosis benefit from the use of disease-appropriate animal models,including experimental autoimmune encephalomyelitis.Prior to understanding the pathophysiology and developing treatments for non-motor symptoms,it is critical to chara cterize the animal model in terms of its ability to replicate certain non-motor features of multiple sclerosis.As such,no single animal model can mimic the entire spectrum of symptoms.This review focuses on the non-motor symptoms that have been investigated in animal models of multiple sclerosis as well as possible underlying mechanisms.Further,we highlighted gaps in the literature to explain the nonmotor aspects of multiple sclerosis in expe rimental animal models,which will serve as the basis for future studies. 展开更多
关键词 ANXIETY cognitive deficit DEPRESSION experimental autoimmune encephalomyelitis motor disability neurological disorder PAIN PATHOPHYSIOLOGY preclinical study sensory impairments
下载PDF
Antisense therapy:a potential breakthrough in the treatment of neurodegenerative diseases 被引量:1
10
作者 Roberta Romano Cecilia Bucci 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1027-1035,共9页
Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and th... Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide.Therefore,it is necessary to find new therapeutic approaches,and antisense therapies offer this possibility,having the great advantage of not modifying cellular genome and potentially being safer.Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases.The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases,with a focus on those antisense therapies that have already received the approval of the U.S.Food and Drug Administration. 展开更多
关键词 Alzheimer’s disease amyotrophic lateral sclerosis antisense oligonucleotide Huntington’s disease neurodegenerative disorders Parkinson’s disease SIRNA
下载PDF
Hybrid treatment of varied orthodontic appliances for a patient with skeletal class II and temporomandibular joint disorders:A case report and review of literature 被引量:1
11
作者 Tong Lu Li Mei +2 位作者 Bao-Chao Li Zi-Wei Huang Huang Li 《World Journal of Clinical Cases》 SCIE 2024年第2期431-442,共12页
BACKGROUND The relation between orthodontic treatment and temporomandibular disorders(TMDs)is under debate;the management of TMD during orthodontic treatment has always been a challenge.If TMD symptoms occur during or... BACKGROUND The relation between orthodontic treatment and temporomandibular disorders(TMDs)is under debate;the management of TMD during orthodontic treatment has always been a challenge.If TMD symptoms occur during orthodontic treatment,an immediate pause of orthodontic adjustments is recommended;the treatment can resume when the symptoms are managed and stabilized.CASE SUMMARY This case report presents a patient(26-year-old,female)with angle class I,skeletal class II and TMDs.The treatment was a hybrid of clear aligners,fixed appliances and temporary anchorage devices(TADs).After 3 mo resting and treatment on her TMD,the patient’s TMD symptom alleviated,but her anterior occlusion displayed deep overbite.Therefore,the fixed appliances with TAD were used to correct the anterior deep-bite and level maxillary and mandibular deep curves.After the levelling,the patient showed dual bite with centric relation and maximum intercuspation discrepancy on her occlusion.After careful examination of temporomandibular joints(TMJ)position,the stable bite splint and Invisible Mandibular Advancement appliance were used to reconstruct her occlusion.Eventually,the improved facial appearance and relatively stable occlusion were achieved.The 1-year follow-up records showed there was no obvious change in TMJ morphology,and her occlusion was stable.CONCLUSION TMD screening and monitoring is of great clinical importance in the TMD susceptible patients.Hybrid treatment with clear aligners and fixed appliances and TADs is an effective treatment modality for the complex cases. 展开更多
关键词 Temporomandibular disorder Skeletal class II Deep overbite Dual bite Invisible mandibular advancement appliance Case report
下载PDF
Genetically predicted fatty liver disease and risk of psychiatric disorders: A mendelian randomization study 被引量:1
12
作者 Wei-Ming Xu Hai-Fu Zhang +2 位作者 Yong-Hang Feng Shuo-Jun Li Bi-Yun Xie 《World Journal of Clinical Cases》 SCIE 2024年第14期2359-2369,共11页
BACKGROUND Non-alcoholic fatty liver disease(NAFLD)and alcohol-related liver disease(Ar-LD)constitute the primary forms of chronic liver disease,and their incidence is progressively increasing with changes in lifestyl... BACKGROUND Non-alcoholic fatty liver disease(NAFLD)and alcohol-related liver disease(Ar-LD)constitute the primary forms of chronic liver disease,and their incidence is progressively increasing with changes in lifestyle habits.Earlier studies have do-cumented a correlation between the occurrence and development of prevalent mental disorders and fatty liver.AIM To investigate the correlation between fatty liver and mental disorders,thus ne-cessitating the implementation of a mendelian randomization(MR)study to elu-cidate this association.METHODS Data on NAFLD and ArLD were retrieved from the genome-wide association studies catalog,while information on mental disorders,including Alzheimer's disease,schizophrenia,anxiety disorder,attention deficit hyperactivity disorder(ADHD),bipolar disorder,major depressive disorder,multiple personality dis-order,obsessive-compulsive disorder(OCD),post-traumatic stress disorder(PTSD),and schizophrenia was acquired from the psychiatric genomics consor-tium.A two-sample MR method was applied to investigate mediators in signifi-cant associations.RESULTS After excluding weak instrumental variables,a causal relationship was identified between fatty liver disease and the occurrence and development of some psychia-tric disorders.Specifically,the findings indicated that ArLD was associated with a significantly elevated risk of developing ADHD(OR:5.81,95%CI:5.59-6.03,P<0.01),bipolar disorder(OR:5.73,95%CI:5.42-6.05,P=0.03),OCD(OR:6.42,95%CI:5.60-7.36,P<0.01),and PTSD(OR:5.66,95%CI:5.33-6.01,P<0.01).Meanwhile,NAFLD significantly increased the risk of developing bipolar disorder(OR:55.08,95%CI:3.59-845.51,P<0.01),OCD(OR:61.50,95%CI:6.69-565.45,P<0.01),and PTSD(OR:52.09,95%CI:4.24-639.32,P<0.01).CONCLUSION Associations were found between genetic predisposition to fatty liver disease and an increased risk of a broad range of psychiatric disorders,namely bipolar disorder,OCD,and PTSD,highlighting the significance of preven-tive measures against psychiatric disorders in patients with fatty liver disease. 展开更多
关键词 Non-alcoholic fatty liver disease Alcohol-related liver disease Psychiatric disorders Mendelian randomization Single nucleotide polymorphisms
下载PDF
Targeting TrkB–PSD-95 coupling to mitigate neurological disorders
13
作者 Xin Yang Yu-Wen Alvin Huang John Marshall 《Neural Regeneration Research》 SCIE CAS 2025年第3期715-724,共10页
Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at... Tropomyosin receptor kinase B(TrkB)signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory.The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre-or postsynaptic TrkB resulting in the strengthening of synapses,reflected by long-term potentiation.Postsynaptically,the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca^(2+)/calmodulin-dependent protein kinaseⅡand phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation.In this review,we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders.A reduction of TrkB signaling has been observed in neurodegenerative disorders,such as Alzheimer's disease and Huntington's disease,and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression.Treatment with brain-derived neurotrophic factor is problematic,due to poor pharmacokinetics,low brain penetration,and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform.Although TrkB agonists and antibodies that activate TrkB are being intensively investigated,they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions.Targeting TrkB–postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects. 展开更多
关键词 Angelman syndrome AUTISM brain-derived neurotrophic factor DEPRESSION neurodegenerative disorder neurodevelopmental disorder postsynaptic density protein-95 synaptic plasticity TRKB
下载PDF
The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types
14
作者 Hongye Xu He Li +9 位作者 Ping Zhang Yuan Gao Hongyu Ma Tianxiang Gao Hanchen Liu Weilong Hua Lei Zhang Xiaoxi Zhang Pengfei Yang Jianmin Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1947-1953,共7页
Astrocytes are the most abundant glial cells in the central nervous system;they participate in crucial biological processes,maintain brain structure,and regulate nervous system function.Exosomes are cell-derived extra... Astrocytes are the most abundant glial cells in the central nervous system;they participate in crucial biological processes,maintain brain structure,and regulate nervous system function.Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins,peptides,nucleotides,and lipids secreted from their cellular sources.Increasing evidence shows that exosomes participate in a communication network in the nervous system,in which astrocyte-derived exosomes play important roles.In this review,we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system.We also discuss the potential research directions of the exosome-based communication network in the nervous system.The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain.New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators. 展开更多
关键词 ASTROCYTES communication EXOSOMES neurological disorders targeting mechanism
下载PDF
Adverse effects of early-life stress:focus on the rodent neuroendocrine system
15
作者 Seung Hyun Lee Eui-Man Jung 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期336-341,共6页
Early-life stress is associated with a high prevalence of mental illnesses such as post-traumatic stress disorders,attention-deficit/hyperactivity disorder,schizophrenia,and anxiety or depressive behavior,which consti... Early-life stress is associated with a high prevalence of mental illnesses such as post-traumatic stress disorders,attention-deficit/hyperactivity disorder,schizophrenia,and anxiety or depressive behavior,which constitute major public health problems.In the early stages of brain development after birth,events such as synaptogenesis,neuron maturation,and glial differentiation occur in a highly orchestrated manner,and external stress can cause adverse long-term effects throughout life.Our body utilizes multifaceted mechanisms,including neuroendocrine and neurotransmitter signaling pathways,to appropriately process external stress.Newborn individuals first exposed to early-life stress deploy neurogenesis as a stress-defense mechanism;however,in adulthood,early-life stress induces apoptosis of mature neurons,activation of immune responses,and reduction of neurotrophic factors,leading to anxiety,depression,and cognitive and memory dysfunction.This process involves the hypothalamus-pituitary-adrenal axis and neurotransmitters secreted by the central nervous system,including norepinephrine,dopamine,and serotonin.The rodent early-life stress model is generally used to experimentally assess the effects of stress during neurodevelopment.This paper reviews the use of the early-life stress model and stress response mechanisms of the body and discusses the experimental results regarding how early-life stress mediates stress-related pathways at a high vulnerability of psychiatric disorder in adulthood. 展开更多
关键词 early-life stress hypothalamic-pituitary-adrenergic axis maternal separation mental illness neurodevelopmental disorder neuroendocrine system NEUROTRANSMITTER
下载PDF
Role of copper in central nervous system physiology and pathology
16
作者 Martina Locatelli Cinthia Farina 《Neural Regeneration Research》 SCIE CAS 2025年第4期1058-1068,共11页
Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central ne... Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis. 展开更多
关键词 ASTROCYTES central nervous system COPPER CUPRIZONE multiple sclerosis MYELIN neurodegenerative disorders
下载PDF
Cognition and movement in neurodegenerative disorders:a dynamic duo
17
作者 Marit F.L.Ruitenberg 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2101-2102,共2页
People with neurodegenerative disorders often experience problems across a variety of functional domains,including cognition,movement,and psychosocial functioning.The classification of these disorders is based on the ... People with neurodegenerative disorders often experience problems across a variety of functional domains,including cognition,movement,and psychosocial functioning.The classification of these disorders is based on the phenotypical manifestations that represent the most prominent clinical features.For example,Parkinson's disease and Huntington's disease are typically regarded as movement disorders,whereas Alzheimer's disease(AD) and other dementias are regarded as cognitive disorders. 展开更多
关键词 DISORDERS HUNTINGTON DEGENERATIVE
下载PDF
The Role of Adipose Tissue-derived Exosomes in Chronic Metabolic Disorders
18
作者 Rui HE Yong CHEN 《Current Medical Science》 SCIE CAS 2024年第3期463-474,共12页
Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases,such as type 2 diabetes mellitus(T2DM),cardiovascular diseases,and non-alcoholic fatty liver disease(NAFLD).Adipose tissue is no... Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases,such as type 2 diabetes mellitus(T2DM),cardiovascular diseases,and non-alcoholic fatty liver disease(NAFLD).Adipose tissue is not only the main form of energy storage but also an endocrine organ that not only secretes adipocytokines but also releases many extracellular vesicles(EVs)that play a role in the regulation of whole-body metabolism.Exosomes are a subtype of EVs,and accumulating evidence indicates that adipose tissue exosomes(AT Exos)mediate crosstalk between adipose tissue and multiple organs by being transferred to targeted cells or tissues through paracrine or endocrine mechanisms.However,the roles of AT Exos in crosstalk with metabolic organs remain to be fully elucidated.In this review,we summarize the latest research progress on the role of AT Exos in the regulation of metabolic disorders.Moreover,we discuss the potential role of AT Exos as biomarkers in metabolic diseases and their clinical application. 展开更多
关键词 EXOSOME adipose tissue OBESITY DIABETES chronic metabolic disorder miRNA
下载PDF
Genetic pathways in cerebral palsy:a review of the implications for precision diagnosis and understanding disease mechanisms
19
作者 Yiran Xu Yifei Li +2 位作者 Seidu A.Richard Yanyan Sun Changlian Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1499-1508,共10页
Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progre... Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progressive disturbances in the fetal or neonatal brain.These disturbances severely impact the child’s daily life and impose a substantial economic burden on the family.Although cerebral palsy encompasses various brain injuries leading to similar clinical outcomes,the unde rstanding of its etiological pathways remains incomplete owing to its complexity and heterogeneity.This review aims to summarize the current knowledge on the genetic factors influencing cerebral palsy development.It is now widely acknowledged that genetic mutations and alterations play a pivotal role in cerebral palsy development,which can be further influenced by environmental fa ctors.Des pite continuous research endeavors,the underlying fa ctors contributing to cerebral palsy remain are still elusive.However,significant progress has been made in genetic research that has markedly enhanced our comprehension of the genetic factors underlying cerebral palsy development.Moreove r,these genetic factors have been categorized based on the identified gene mutations in patients through clinical genotyping,including thrombosis,angiogenesis,mitochondrial and oxidative phosphorylation function,neuronal migration,and cellular autophagy.Furthermore,exploring targeted genotypes holds potential for precision treatment.In conclusion,advancements in genetic research have substantially improved our understanding of the genetic causes underlying cerebral palsy.These breakthroughs have the potential to pave the way for new treatments and therapies,consequently shaping the future of cerebral palsy research and its clinical management.The investigation of cerebral palsy genetics holds the potential to significantly advance treatments and management strategies.By elucidating the underlying cellular mechanisms,we can develop to rgeted interventions to optimize outcomes.A continued collaboration between researchers and clinicians is imperative to comprehensively unravel the intricate genetic etiology of cerebral palsy. 展开更多
关键词 cerebral palsy environmental factors ETIOLOGY genetic factors genetic mutation movement disorder spastic diplegia
下载PDF
Branch-Chain-Rich Diisopropyl Ether with Steric Hindrance Facilitates Stable Cycling of Lithium Batteries at-20℃
20
作者 Houzhen Li Yongchao Kang +6 位作者 Wangran Wei Chuncheng Yan Xinrui Ma Hao Chen Yuanhua Sang Hong Liu Shuhua Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期121-135,共15页
Li metal batteries(LMBs)offer signifi-cant potential as high energy density alternatives;nev-ertheless,their performance is hindered by the slow desolvation process of electrolytes,particularly at low temperatures(LT)... Li metal batteries(LMBs)offer signifi-cant potential as high energy density alternatives;nev-ertheless,their performance is hindered by the slow desolvation process of electrolytes,particularly at low temperatures(LT),leading to low coulombic efficiency and limited cycle stability.Thus,it is essential to opti-mize the solvation structure thereby achieving a rapid desolvation process in LMBs at LT.Herein,we introduce branch chain-rich diisopropyl ether(DIPE)into a 2.5 M Li bis(fluorosulfonyl)imide dipropyl ether(DPE)elec-trolyte as a co-solvent for high-performance LMBs at-20℃.The incorporation of DIPE not only enhances the disorder within the electrolyte,but also induces a steric hindrance effect form DIPE’s branch chain,excluding other solvent molecules from Li+solvation sheath.Both of these factors contribute to the weak interactions between Li^(+)and solvent molecules,effectively reducing the desolvation energy of the electrolyte.Consequently,Li(50μm)||LFP(mass loading~10 mg cm^(-2))cells in DPE/DIPE based electrolyte demonstrate stable performance over 650 cycles at-20℃,delivering 87.2 mAh g^(-1),and over 255 cycles at 25℃ with 124.8 mAh g^(-1).DIPE broadens the electrolyte design from molecular structure considera-tions,offering a promising avenue for highly stable LMBs at LT. 展开更多
关键词 Solvation structure Li metal battery Low temperature Steric hindrance DISORDER
下载PDF
上一页 1 2 145 下一页 到第
使用帮助 返回顶部