With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is...With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is more critical in maintaining system reliable and security operations. Latest developed information and communication technologies provide a platform to enhance the functions and performance of power system control center. Smart power dispatch concept will be the trend of future control center development. In this paper, we start from the human factors of control center design and propose operation indices to reduce the information presented to the system operator. The operation indices will be the important criteria in situation awareness of a power grid. Past, present, future and capability states of a power grid are also proposed to provide better visions to the operator of system conditions. The basic ideas of operation indices and operation states are discussed in the paper. In the end, the design factors for a power dispatch cockpit are discussed.展开更多
风电机组并网容量占比的不断增大为电力系统风电消纳带来了巨大挑战。数据中心作为高灵活性电负荷,具有电网风电消纳巨大潜力。因此,提出一种计及数据中心和风电不确定性的微电网经济调度模型。首先,根据数据中心的分层结构建立信息层...风电机组并网容量占比的不断增大为电力系统风电消纳带来了巨大挑战。数据中心作为高灵活性电负荷,具有电网风电消纳巨大潜力。因此,提出一种计及数据中心和风电不确定性的微电网经济调度模型。首先,根据数据中心的分层结构建立信息层和电力层之间的耦合模型;其次,针对风电出力不确定性,搭建计及数据中心和风电不确定性的微电网经济调度模型;最后,基于对偶理论和两阶段鲁棒优化算法,将调度模型转化为鲁棒优化模型并采用列和约束生成算法(column and constraint generation,C&CG)和对偶理论进行求解。算例结果表明:数据中心参与微电网经济调度可有效降低运行成本,同时系统运营商按需求可灵活调整风电出力不确定性。展开更多
文摘With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is more critical in maintaining system reliable and security operations. Latest developed information and communication technologies provide a platform to enhance the functions and performance of power system control center. Smart power dispatch concept will be the trend of future control center development. In this paper, we start from the human factors of control center design and propose operation indices to reduce the information presented to the system operator. The operation indices will be the important criteria in situation awareness of a power grid. Past, present, future and capability states of a power grid are also proposed to provide better visions to the operator of system conditions. The basic ideas of operation indices and operation states are discussed in the paper. In the end, the design factors for a power dispatch cockpit are discussed.
文摘风电机组并网容量占比的不断增大为电力系统风电消纳带来了巨大挑战。数据中心作为高灵活性电负荷,具有电网风电消纳巨大潜力。因此,提出一种计及数据中心和风电不确定性的微电网经济调度模型。首先,根据数据中心的分层结构建立信息层和电力层之间的耦合模型;其次,针对风电出力不确定性,搭建计及数据中心和风电不确定性的微电网经济调度模型;最后,基于对偶理论和两阶段鲁棒优化算法,将调度模型转化为鲁棒优化模型并采用列和约束生成算法(column and constraint generation,C&CG)和对偶理论进行求解。算例结果表明:数据中心参与微电网经济调度可有效降低运行成本,同时系统运营商按需求可灵活调整风电出力不确定性。