To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme...To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.展开更多
Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching m...Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.展开更多
An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of rout...An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.展开更多
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti...Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.展开更多
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat...Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.展开更多
This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model...This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.展开更多
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr...This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.展开更多
China consumes significant amount of natural gas in winter.The integrated community energy utilization system(ICEUS)cannot stabilize the output of electricity and heat if there is a shortage of natural gas.The operati...China consumes significant amount of natural gas in winter.The integrated community energy utilization system(ICEUS)cannot stabilize the output of electricity and heat if there is a shortage of natural gas.The operation cost of the system still needs improvement.An energy supply structure using garbage power as the core of ICEUS was established in the study.The optimal dispatchingmodel of ICEUS was established using the regulating characteristic of the community load.The sine-cosine algorithm(SCA)based on nonlinear factors and segmented weight was presented to solve the optimal dispatching model of ICEUS.From the simulation results,compared with particle swarm optimization algorithm(PSO),SCA,exponential sinecosine algorithm(ESCA),and parabolic sine-cosine algorithm(PSCA),the daily operation cost of ICEUS was reduced by the improved SCA by 4.4%,2.9%,2.6%and 4.1%,respectively,in winter.The same was true in summer.The daily system operating cost was effectively reduced by the algorithm proposed in the study.The cost benefits of the optimized ICEUS operation was realized.展开更多
The optimization process of embedded, or DG (distributed generation) is a very complex task, and it should be evaluated and compared by means of multi-criteria methods of analysis. The classical method for selection...The optimization process of embedded, or DG (distributed generation) is a very complex task, and it should be evaluated and compared by means of multi-criteria methods of analysis. The classical method for selection is usually based only on a single criterion analysis, and it is defined by thermal or economic aspects. The problem of optimal dispatch of DG is typical example of optimization, because it differs from the classical problem of generation dispatch in the power system, due to the specific criteria related to the DG interconnection. The most important goals are to maximize the renewable production and to minimize the total cost, while satisfying additional constraints related to the operation of a distribution network. As there are many DGs in a distribution network, it is very complicated to decide the optimal DG outputs to satisfy all the criteria and constraints imposed by the distribution network. Another problem is the lack of the dispatcher control over DGs, and very often, the only available action is to switch on or off the generator. Finally, network operator and DG owner perspective are often opposed regarding appropriate control action in the network. In this paper, a multicriteria decision support based on AHP (analytical hierarchical processes) method is proposed for the choice of the dispatching action. The method is illustrated on the choice of the DG to be switched off in the case or reverse power flow.展开更多
RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (v...RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.展开更多
In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply sys...In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS.展开更多
This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys...This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.展开更多
The traditional energy hub based model has difficulties in clearly describing the state transition and transition conditions of the energy unit in the integrated energy system(IES).Therefore,this study proposes a stat...The traditional energy hub based model has difficulties in clearly describing the state transition and transition conditions of the energy unit in the integrated energy system(IES).Therefore,this study proposes a state transition modeling method for an IES based on a cyber-physical system(CPS)to optimize the state transition of energy unit in the IES.This method uses the physical,integration,and optimization layers as a three-layer modeling framework.The physical layer is used to describe the physical models of energy units in the IES.In the integration layer,the information flow is integrated into the physical model of energy unit in the IES to establish the state transition model,and the transition conditions between different states of the energy unit are given.The optimization layer aims to minimize the operating cost of the IES and enables the operating state of energy units to be transferred to the target state.Numerical simulations show that,compared with the traditional modeling method,the state transition modeling method based on CPS achieves the observability of the operating state of the energy unit and its state transition in the dispatching cycle,which obtains an optimal state of the energy unit and further reduces the system operating costs.展开更多
In the pallet pool system, the differentiation of palletized freight volumes in different regions and seasonal transport of certain goods lead to the imbalance of pallets distribution among regions. It is necessary to...In the pallet pool system, the differentiation of palletized freight volumes in different regions and seasonal transport of certain goods lead to the imbalance of pallets distribution among regions. It is necessary to improve the utilization of pallets through dispatching. The paper analyzes the factors which affect empty pallets dispatching, it includes carbon emission, transportation time and pallet type based on the pallet pool mode of enterprise alliance. On this basis, the optimization model is established with the goal of minimum total dispatching cost. Then, according to the different influences of railway and highway in transportation cost, the dispatching scheme is analyzed and the transportation mode of empty pallets dispatching is determined. Considering the characteristics of model, Cplex is used to solve it. Finally, a case is used to verify the feasibility and superiority of reasonable empty pallets dispatching in different transportation modes, and the transport characteristics of two transportation modes are analyzed. Moreover, the costs of pallets leasing and dispatching are compared.展开更多
To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of t...To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications.展开更多
Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This ...Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.展开更多
With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage...With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage source converter(VSC) based multi-terminal direct current(MTDC) grids. In order to improve the capability of distribution systems to cope with uncertainty, the flexibility enhancement of AC-MTDC distribution systems considering aggregated EVs is studied. Firstly, the charging and discharging model of one EV is proposed considering the users' demand difference and traveling needs. Based on this, a vehicle-to-grid(V2G) control strategy for aggregated EVs to participate in the flexibility promotion of distribution systems is provided. After that, an optimal flexible dispatching method is proposed to improve the flexibility of power systems through cooperation of VSCs, controllable distributed generations(CDGs), aggregated EVs, and energy storage systems(ESSs). Finally, a case study of an AC-MTDC distribution system is carried out. Simulation results show that the proposed dispatching method is capable of effectively enhancing the system flexibility, reducing renewable power curtailment, decreasing load abandonment, and cutting down system cost.展开更多
In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into considerat...In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into consideration the benefits and risk control of both sides. This paper investigates power generation risk dispatch of hydropower plants in the market environment, and proposes a mathematical model which considers maximization of benefits and risk control, reflects control willingness of risk and benefits, resolves it with the PSO algorithm, finding more economic and reasonable results. The feasibility and validity of the model and resolving methods are verified by an example.展开更多
Hydrogen-enriched compressed natural gas(HCNG)has great potential for renewable energy and hydrogen utilization.However,injecting hydrogen into the natural gas network will change original fluid dynamics and complicat...Hydrogen-enriched compressed natural gas(HCNG)has great potential for renewable energy and hydrogen utilization.However,injecting hydrogen into the natural gas network will change original fluid dynamics and complicate compressed gas's physical properties,threatening operational safety of the electricity-HCNG-integrated energy system(E-HCNG-IES).To resolve such problem,this paper investigates effect of HCNG on gas network dynamics and presents an improved HCNG network model,which embodies the influence of blending hydrogen on the pressure drop equation and line pack equation.In addition,an optimal dispatch model for the E-HCNG-IES,considering the“production-storage-blending-transportation-utilization”link of the HCNG supply chain,is also proposed.The dispatch model is converted into a mixed-integer second-order conic programming(MISOCP)problem using the second-order cone(SOC)relaxation and piecewise linearization techniques.An iterative algorithm is proposed based on the convex-concave procedure and bound-tightening method to obtain a tight solution.Finally,the proposed methodology is evaluated through two E-HCNGIES numerical testbeds with different hydrogen volume fractions.Detailed operation analysis reveals that E-HCNG-IES can benefit from economic and environmental improvement with increased hydrogen volume fraction,despite declining energy delivery capacityand line pack flexibility.展开更多
With the increased promotion of integrated energy power systems(IEPS),renewable energy and energy storage systems(ESS)play a more important role.However,the fluctuation and intermittent nature of wind not only results...With the increased promotion of integrated energy power systems(IEPS),renewable energy and energy storage systems(ESS)play a more important role.However,the fluctuation and intermittent nature of wind not only results in substantial reliability and stability defects,but it also weakens the competitiveness of wind generation in the electric power market.Meanwhile,the way to further enhance the system reliability effectively improving market profits of wind farms is one of the most important aspects of Wind-ESS joint operational design.In this paper,a market-oriented optimized dispatching strategy for a wind farm with a multiple stage hybrid ESS is proposed.The first stage ESS is designed to improve the profits of wind generation through day-ahead market operations,the real-time marketbased second stage ESS is focused on day-ahead forecasting error elimination and wind power fluctuation smoothing,while the backup stage ESS is associated with them to provide the ancillary service.An interval forecasting method is adopted to help to ensure reliable forecast results of day-ahead wind power,electricity prices and loads.With this hybrid ESS design,supply reliability and market profits are simultaneously achieved for wind farms.展开更多
基金supported by the Special Research Project on Power Planning of the Guangdong Power Grid Co.,Ltd.
文摘To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(19ZD2GA003)“Key Technologies and Demonstrative Applications of Market Consumption and Dispatching Control of Photothermal-Photovoltaic-Wind PowerNew Energy Base(Multi Energy System Optimization)”.
文摘Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.
基金The National Natural Science Foundation of China(No.71101025)the Science and Technology Key Plan Project of Changzhou(No.CE20125001)
文摘An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.
基金State Grid Corporation Science and Technology Project(520605190010).
文摘Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.
基金This work has been partly funded by the National Natural Science Foundation of China(No.50078048).
文摘This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.
文摘This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.
基金The work is funded partly by the Natural Science Foundation of Inner Mongolia(2019MS05047)Key Technology Projects of Inner Mongolia Autonomous Region(2019GG319)Research on Key Technologies of MW advanced flywheel energy storage(2020ZD0017).
文摘China consumes significant amount of natural gas in winter.The integrated community energy utilization system(ICEUS)cannot stabilize the output of electricity and heat if there is a shortage of natural gas.The operation cost of the system still needs improvement.An energy supply structure using garbage power as the core of ICEUS was established in the study.The optimal dispatchingmodel of ICEUS was established using the regulating characteristic of the community load.The sine-cosine algorithm(SCA)based on nonlinear factors and segmented weight was presented to solve the optimal dispatching model of ICEUS.From the simulation results,compared with particle swarm optimization algorithm(PSO),SCA,exponential sinecosine algorithm(ESCA),and parabolic sine-cosine algorithm(PSCA),the daily operation cost of ICEUS was reduced by the improved SCA by 4.4%,2.9%,2.6%and 4.1%,respectively,in winter.The same was true in summer.The daily system operating cost was effectively reduced by the algorithm proposed in the study.The cost benefits of the optimized ICEUS operation was realized.
文摘The optimization process of embedded, or DG (distributed generation) is a very complex task, and it should be evaluated and compared by means of multi-criteria methods of analysis. The classical method for selection is usually based only on a single criterion analysis, and it is defined by thermal or economic aspects. The problem of optimal dispatch of DG is typical example of optimization, because it differs from the classical problem of generation dispatch in the power system, due to the specific criteria related to the DG interconnection. The most important goals are to maximize the renewable production and to minimize the total cost, while satisfying additional constraints related to the operation of a distribution network. As there are many DGs in a distribution network, it is very complicated to decide the optimal DG outputs to satisfy all the criteria and constraints imposed by the distribution network. Another problem is the lack of the dispatcher control over DGs, and very often, the only available action is to switch on or off the generator. Finally, network operator and DG owner perspective are often opposed regarding appropriate control action in the network. In this paper, a multicriteria decision support based on AHP (analytical hierarchical processes) method is proposed for the choice of the dispatching action. The method is illustrated on the choice of the DG to be switched off in the case or reverse power flow.
文摘RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.
基金supported by Science and Technology Project of SGCC(5108-202218280A-2-375-XG)。
文摘In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS.
基金supported by the National Natural Science Foundation of China(Grant 62103101)the Natural Science Foundation of Jiangsu Province of China(Grant BK20210217)+5 种基金the China Postdoctoral Science Foundation(Grant 2022M710680)the National Natural Science Foundation of China(Grant 62273094)the"Zhishan"Scholars Programs of Southeast Universitythe Fundamental Science(Natural Science)General Program of Jiangsu Higher Education Institutions(No.21KJB470020)the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(No.XTCX202102)the Introduced Talents Scientific Research Start-up Fund Project,Nanjing Institute of Technology(No.YKJ202133).
文摘This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China(No.52107108)。
文摘The traditional energy hub based model has difficulties in clearly describing the state transition and transition conditions of the energy unit in the integrated energy system(IES).Therefore,this study proposes a state transition modeling method for an IES based on a cyber-physical system(CPS)to optimize the state transition of energy unit in the IES.This method uses the physical,integration,and optimization layers as a three-layer modeling framework.The physical layer is used to describe the physical models of energy units in the IES.In the integration layer,the information flow is integrated into the physical model of energy unit in the IES to establish the state transition model,and the transition conditions between different states of the energy unit are given.The optimization layer aims to minimize the operating cost of the IES and enables the operating state of energy units to be transferred to the target state.Numerical simulations show that,compared with the traditional modeling method,the state transition modeling method based on CPS achieves the observability of the operating state of the energy unit and its state transition in the dispatching cycle,which obtains an optimal state of the energy unit and further reduces the system operating costs.
基金Supported by the National Natural Science Foundation of China(61374202)the “Fundamental Research Funds for the Central Universities”(2014YJS071)
文摘In the pallet pool system, the differentiation of palletized freight volumes in different regions and seasonal transport of certain goods lead to the imbalance of pallets distribution among regions. It is necessary to improve the utilization of pallets through dispatching. The paper analyzes the factors which affect empty pallets dispatching, it includes carbon emission, transportation time and pallet type based on the pallet pool mode of enterprise alliance. On this basis, the optimization model is established with the goal of minimum total dispatching cost. Then, according to the different influences of railway and highway in transportation cost, the dispatching scheme is analyzed and the transportation mode of empty pallets dispatching is determined. Considering the characteristics of model, Cplex is used to solve it. Finally, a case is used to verify the feasibility and superiority of reasonable empty pallets dispatching in different transportation modes, and the transport characteristics of two transportation modes are analyzed. Moreover, the costs of pallets leasing and dispatching are compared.
基金supported by Science and Technology Project of State Grid Hebei Electric Power Company(SGHE0000DKJS2000228)
文摘To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant J2020090.
文摘Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.
基金supported in part by the National Natural Science Foundation of China (No.U2166202)S&T Program of Hebei (No.20312102D)。
文摘With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage source converter(VSC) based multi-terminal direct current(MTDC) grids. In order to improve the capability of distribution systems to cope with uncertainty, the flexibility enhancement of AC-MTDC distribution systems considering aggregated EVs is studied. Firstly, the charging and discharging model of one EV is proposed considering the users' demand difference and traveling needs. Based on this, a vehicle-to-grid(V2G) control strategy for aggregated EVs to participate in the flexibility promotion of distribution systems is provided. After that, an optimal flexible dispatching method is proposed to improve the flexibility of power systems through cooperation of VSCs, controllable distributed generations(CDGs), aggregated EVs, and energy storage systems(ESSs). Finally, a case study of an AC-MTDC distribution system is carried out. Simulation results show that the proposed dispatching method is capable of effectively enhancing the system flexibility, reducing renewable power curtailment, decreasing load abandonment, and cutting down system cost.
文摘In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into consideration the benefits and risk control of both sides. This paper investigates power generation risk dispatch of hydropower plants in the market environment, and proposes a mathematical model which considers maximization of benefits and risk control, reflects control willingness of risk and benefits, resolves it with the PSO algorithm, finding more economic and reasonable results. The feasibility and validity of the model and resolving methods are verified by an example.
基金supported in part by the Science and Technology Project of State Grid Corporation of China(No.5100-202119574A-0-5-SF)。
文摘Hydrogen-enriched compressed natural gas(HCNG)has great potential for renewable energy and hydrogen utilization.However,injecting hydrogen into the natural gas network will change original fluid dynamics and complicate compressed gas's physical properties,threatening operational safety of the electricity-HCNG-integrated energy system(E-HCNG-IES).To resolve such problem,this paper investigates effect of HCNG on gas network dynamics and presents an improved HCNG network model,which embodies the influence of blending hydrogen on the pressure drop equation and line pack equation.In addition,an optimal dispatch model for the E-HCNG-IES,considering the“production-storage-blending-transportation-utilization”link of the HCNG supply chain,is also proposed.The dispatch model is converted into a mixed-integer second-order conic programming(MISOCP)problem using the second-order cone(SOC)relaxation and piecewise linearization techniques.An iterative algorithm is proposed based on the convex-concave procedure and bound-tightening method to obtain a tight solution.Finally,the proposed methodology is evaluated through two E-HCNGIES numerical testbeds with different hydrogen volume fractions.Detailed operation analysis reveals that E-HCNG-IES can benefit from economic and environmental improvement with increased hydrogen volume fraction,despite declining energy delivery capacityand line pack flexibility.
基金This work was supported in part by the National Natural Science Foundation of China(No.51607025).
文摘With the increased promotion of integrated energy power systems(IEPS),renewable energy and energy storage systems(ESS)play a more important role.However,the fluctuation and intermittent nature of wind not only results in substantial reliability and stability defects,but it also weakens the competitiveness of wind generation in the electric power market.Meanwhile,the way to further enhance the system reliability effectively improving market profits of wind farms is one of the most important aspects of Wind-ESS joint operational design.In this paper,a market-oriented optimized dispatching strategy for a wind farm with a multiple stage hybrid ESS is proposed.The first stage ESS is designed to improve the profits of wind generation through day-ahead market operations,the real-time marketbased second stage ESS is focused on day-ahead forecasting error elimination and wind power fluctuation smoothing,while the backup stage ESS is associated with them to provide the ancillary service.An interval forecasting method is adopted to help to ensure reliable forecast results of day-ahead wind power,electricity prices and loads.With this hybrid ESS design,supply reliability and market profits are simultaneously achieved for wind farms.