The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematica...The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematically studied by microstructure characterization,thermodynamic calculation,and analysis of solidification curves.The results show that the grain size of AZ31 Mg alloy initially decreases and then increases as the MgOp addition temperature is increased from 720 to 810℃,exhibiting a minimum value of 136μm at 780℃.The improved grain refinement efficiency with increasing MgOp addition temperature can be attributed to the reduced Mg melt viscosity and enhanced wettability between MgOp and Mg melt.Furthermore,a corresponding physical model describing the solidification behavior and grain refinement mechanism was proposed.展开更多
This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersio...This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.展开更多
This work investigates the dispersion properties of Rayleigh-type surface waves propagating in a layered piezoelectric nanostructure composed of a piezoelectric nanofilm over an elastic substrate.As one of the most im...This work investigates the dispersion properties of Rayleigh-type surface waves propagating in a layered piezoelectric nanostructure composed of a piezoelectric nanofilm over an elastic substrate.As one of the most important features of nanostructures,surface effects characterized by surface stresses and surface electric displacements are taken into account through the surface piezoelectricity theory and the nonclassical mechanical and electrical boundary conditions.Concrete expressions of the dispersion equation are derived,and numerical results are provided to examine the effects of several surface-related parameters,including the surface elasticity,surface piezoelectricity,surface dielectricity,surface density,as well as surface residual stress,on the dispersion modes and phase velocity.The size-dependent dispersion behaviors occurring with surface effects are also predicted,and they may vanish once the thickness of the piezoelectric nanofilm reaches a critical value.展开更多
Taking self-fields into consideration, dispersion properties of two types of electromagnetic modes for a high energy electron beam guided with an ion channel are investigated by using the linear perturbation theory. T...Taking self-fields into consideration, dispersion properties of two types of electromagnetic modes for a high energy electron beam guided with an ion channel are investigated by using the linear perturbation theory. The dependences of the dispersion frequencies of electromagnetic waves on the electron beam radius, betatron frequency and boundary current are revealed. It is found that the electron beam radius and betatron frequency have different influences on the electromagnetic waves dispersion behavior by compared with the previous works. As the boundary current is taken into account, the TM modes will have two branches and a lowfrequency branch emerged as the new branch in strong ion channel case. This new branch has similar dispersion behavior to the betatron modes. For TE modes, there are two branches and they have different dispersion behaviors in strong ion channel case. However, in weak ion channel case, the dispersion behaviors for both of the low frequency and high frequency branches are similar.展开更多
基金the National Natural Science Foundation of China(No.51871155).
文摘The effect of addition temperature of MgO particles(MgOp)on their dispersion behavior and the efficiency of grain refinement in AZ31 Mg alloy was investigated.In addition,the grain refinement mechanism was systematically studied by microstructure characterization,thermodynamic calculation,and analysis of solidification curves.The results show that the grain size of AZ31 Mg alloy initially decreases and then increases as the MgOp addition temperature is increased from 720 to 810℃,exhibiting a minimum value of 136μm at 780℃.The improved grain refinement efficiency with increasing MgOp addition temperature can be attributed to the reduced Mg melt viscosity and enhanced wettability between MgOp and Mg melt.Furthermore,a corresponding physical model describing the solidification behavior and grain refinement mechanism was proposed.
基金supported by the National Natural Science Foundation of China(Nos.10672108 and 10632020)the key project of the Ministry of Education of China(No.206014).
文摘This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.
基金Project supported by the National Natural Science Foundation of China(Nos.11802185 and 11872041)the Natural Science Foundation of Hebei Province of China(No.A2019210203)the Youth Fund Project of Hebei Education Department of China(No.QN2018037)
文摘This work investigates the dispersion properties of Rayleigh-type surface waves propagating in a layered piezoelectric nanostructure composed of a piezoelectric nanofilm over an elastic substrate.As one of the most important features of nanostructures,surface effects characterized by surface stresses and surface electric displacements are taken into account through the surface piezoelectricity theory and the nonclassical mechanical and electrical boundary conditions.Concrete expressions of the dispersion equation are derived,and numerical results are provided to examine the effects of several surface-related parameters,including the surface elasticity,surface piezoelectricity,surface dielectricity,surface density,as well as surface residual stress,on the dispersion modes and phase velocity.The size-dependent dispersion behaviors occurring with surface effects are also predicted,and they may vanish once the thickness of the piezoelectric nanofilm reaches a critical value.
基金supported by the National ITER project Foundation of China(Nos.2013GB106001 and 2013GB106003)
文摘Taking self-fields into consideration, dispersion properties of two types of electromagnetic modes for a high energy electron beam guided with an ion channel are investigated by using the linear perturbation theory. The dependences of the dispersion frequencies of electromagnetic waves on the electron beam radius, betatron frequency and boundary current are revealed. It is found that the electron beam radius and betatron frequency have different influences on the electromagnetic waves dispersion behavior by compared with the previous works. As the boundary current is taken into account, the TM modes will have two branches and a lowfrequency branch emerged as the new branch in strong ion channel case. This new branch has similar dispersion behavior to the betatron modes. For TE modes, there are two branches and they have different dispersion behaviors in strong ion channel case. However, in weak ion channel case, the dispersion behaviors for both of the low frequency and high frequency branches are similar.