Wave propagation in a piezoelectric layered structure of a film bulk acoustic resonator (FBAR/ is studied. The accurate results of dispersion relation are calculated using the proposed elastic electrode model for bot...Wave propagation in a piezoelectric layered structure of a film bulk acoustic resonator (FBAR/ is studied. The accurate results of dispersion relation are calculated using the proposed elastic electrode model for both electroded and unelectroded layered plates. The differences of calculated cut-off frequencies between the current elastic electrode model and the simplified inertial electrode model (often used in the quartz resonator analysis) are illustrated in detail, which shows that an elastic electrode model is indeed needed for the accurate analysis of FBAR. These results can be used as an accurate criterion to calibrate the 2-D theoretical model for a real finite-size structure of FBAR.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 11502108, 11232007, 51405225)the Natural Science Foundation of Jiangsu Province (Nos. BK20140037, BK20140808)+2 种基金the Fundamental Research Funds for Central Universities (No. NE2013101)the Program for New Century Excellent Talents in Universities (No. NCET-12-0625)a project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Wave propagation in a piezoelectric layered structure of a film bulk acoustic resonator (FBAR/ is studied. The accurate results of dispersion relation are calculated using the proposed elastic electrode model for both electroded and unelectroded layered plates. The differences of calculated cut-off frequencies between the current elastic electrode model and the simplified inertial electrode model (often used in the quartz resonator analysis) are illustrated in detail, which shows that an elastic electrode model is indeed needed for the accurate analysis of FBAR. These results can be used as an accurate criterion to calibrate the 2-D theoretical model for a real finite-size structure of FBAR.