We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispe...We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispersion relationship of gold film in a wavelength range from 537.12 nm to 905.52 nm,and our results accord well with the reported results by other authors.This method is particularly suited for studying the optical dispersion properties of thin metal films,because a series of dielectric constants over a wide spectral range can be determined simultaneously via only a single scan of the incident angle,thereby avoiding the repeated measurements required when using the angular modulation approach.展开更多
Based on the hyperbolic mild-slope equations derived by Copeland (1985), a numerical model is established in unstag- gered grids. A composite 4 th-order Adam-Bashforth-Moulton (ABM) scheme is used to solve the model i...Based on the hyperbolic mild-slope equations derived by Copeland (1985), a numerical model is established in unstag- gered grids. A composite 4 th-order Adam-Bashforth-Moulton (ABM) scheme is used to solve the model in the time domain. Terms involving the first order spatial derivatives are differenced to O ( Δx )4accuracy utilizing a five-point formula. The nonlinear dispersion relationship proposed by Kirby and Dalrymple (1986) is used to consider the nonlinear effect. A numerical test is performed upon wave propagating over a typical shoal. The agreement between the numerical and the experimental results validates the present model. Biodistribution and applications are also summarized.展开更多
Starting from the linear shallow-water equations and using Arakawa A-E and Z grids, a study is made of inertia-gravitational and Rossby waves in the six grids from the perspectives of frequency and group velocity. Res...Starting from the linear shallow-water equations and using Arakawa A-E and Z grids, a study is made of inertia-gravitational and Rossby waves in the six grids from the perspectives of frequency and group velocity. Results indicate that grids C, Z, and E thereof give smaller distortion compared to the others.展开更多
A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wav...A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wave velocity field is expressed in terms of the horizontal and vertical wave velocity components at an arbitrary water depth level. Linear operators are introduced to improve the accuracy of the kinematic condition at the sea bottom. The dynamic and kinematic conditions at the free surface are expressed in terms of wave velocity variables defined directly on the free surface. The new equations provide high accuracy of linear properties as well as nonlinear properties from shallow to deep water, and extend the applicable range of relative water depth in the case of opposing currents.展开更多
We utilize the anomalous dispersion of planar photonic crystals near the dielectric band edge to control the wavelength-dependent propagation of light. We typically observe an angular swing of up to 10°as the inp...We utilize the anomalous dispersion of planar photonic crystals near the dielectric band edge to control the wavelength-dependent propagation of light. We typically observe an angular swing of up to 10°as the input wavelength is changed from 1290 nm to 1310 rim, which signifies an angular dispersion of 0.5°/am ("Superprism" phenomenon). Such a strong angular dispersion is of the order required for WDM systems. By tuning the incident angle, light beams with up to 20° divergence were collimated over a 25 nm (1285 nm to 1310 nm) bandwidth using a triangular lattice ("Supercollimator" phenomenon). The wavelength collimating range can be extended from 25 nm to 40 nm by changing the lattice from triangular to square. These two devices can be realized in the same configuration, simply by tuning the wavelength. Sources of loss are discussed.展开更多
A dynamic solution is presented for the propagation of waves in an electric-magneto-elastic plate composed of piezoelectric, piezomagnetic materials and elastic matrix. The electric-magneto-elastic plate is polarized ...A dynamic solution is presented for the propagation of waves in an electric-magneto-elastic plate composed of piezoelectric, piezomagnetic materials and elastic matrix. The electric-magneto-elastic plate is polarized along the thickness direction. The generalized displacements are expressed as the sum of the gradient of a scalar (dilatation wave) and the curl of a vector (shear wave). With the help of dynamic equilibrium equations and geometric equations, we can obtain dynamic equations of the dilatation wave and the shear wave. The conclusion that the types of the dilatation waves and the shear waves remain unchanged after being reflected by the boundary can be obtained through the analysis of these kinetic equations. The dispersion properties and phase velocity surface of the dilatation and shear wave can be obtained by solutions of dynamic equilibrium equations. Influences of the piezoelectric and piezomagnetic parameters on wave characteristics are discussed.展开更多
We have characterized polarization dependent loss(PDL), differential group delay(DGD), and chromatic dispersion of an AWG and a simple method was proposed to estimate the chromatic dispersion from the measured DGD of ...We have characterized polarization dependent loss(PDL), differential group delay(DGD), and chromatic dispersion of an AWG and a simple method was proposed to estimate the chromatic dispersion from the measured DGD of the device.展开更多
The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative...The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative hole size/was studied.展开更多
With the vigorous development and huge demand for portable wearable devices,wearable electronics based on functional fibers continue to emerge in a wide range of energy storage,motion monitoring,disease prevention,ele...With the vigorous development and huge demand for portable wearable devices,wearable electronics based on functional fibers continue to emerge in a wide range of energy storage,motion monitoring,disease prevention,electromagnetic interference(EMI)shielding,etc.MXene,as an emerging twodimensional inorganic compound,has shown great potential in functional fiber manufacturing and has attracted much research attention due to its own good mechanical properties,high electrical conductivity,excellent electrochemical properties and favorable processability.Herein,this paper reviews recent advances of MXene-based fibers.Speaking to MXene dispersions,the properties of MXene dispersions including dispersion stability,rheological properties and liquid crystalline properties are highlighted.The preparation techniques used to produce MXene-based fibers and application progress regarding MXene-based fibers into supercapacitors,sensors,EMI shielding and Joule heaters are summarized.Challenges and prospects surrounding the development of MXene-based fibers are proposed in future.This review aims to provide processing guidelines for MXene-based fiber manufacturing,thereby achieving more possibilities of MXene-based fibers in advanced applications with a view to injecting more vitality into the field of smart wearables.展开更多
We demonstrate a new kind of multi-core photonic liquid crystal fibers (PLCFs) which have six liquid crystal cores arrayed in the ring-type geometry and separated by the air holes. Through analyzing the structure of t...We demonstrate a new kind of multi-core photonic liquid crystal fibers (PLCFs) which have six liquid crystal cores arrayed in the ring-type geometry and separated by the air holes. Through analyzing the structure of this kind of PLCFs, it can be found that they have the ability to resist the structure deformation. Due to the effective index of the liquid crystal can be adjusted by temperature and wavelength, the energy in the six liquid crystal cores is increased with the temperature increasing and wavelength decreasing. The effective index of the PLCFs is decreased, the effective fundamental mode area is increased and the dispersion properties are gently affected with the wavelength increasing and temperature decreasing.展开更多
Short-chain chlorinated paraffins(SCCPs) are still controversial candidates for inclusion in the Stockholm Convention.The inherent mixture nature of SCCPs makes it rather difficult to explore their environmental beh...Short-chain chlorinated paraffins(SCCPs) are still controversial candidates for inclusion in the Stockholm Convention.The inherent mixture nature of SCCPs makes it rather difficult to explore their environmental behaviors.A virtual molecule library of 42,720 C10-SCCP congeners covering the full structure spectrum was constructed.We explored the structural effects on the thermodynamic parameters and environmental degradability of C10-SCCPs through semi-empirical quantum chemical calculations.The thermodynamic properties were acquired using the AM1 method,and frontier molecular orbital analysis was carried out to obtain the EHOMO,ELUMO and ELUMO-EHOMO for degradability exploration at the same level.The influence of the chlorination degree(NCl on the relative stability and environmental degradation was elucidated.A novel structural descriptor,μ,was proposed to measure the dispersion of the chlorine atoms within a molecule.There were significant correlations between thermodynamic values and NCl,while the reported NCl-dependent pollution profile of C10-SCCPs in environmental samples was basically consistent with the predicted order of formation stability of C10-SCCP congeners.In addition,isomers with largeμ showed higher relative stability than those with small μ.This could be further verified by the relationship between μ and the reactivity of nucleophilic substitution and · OH attack respectively.The C10-SCCP congeners with less Cl substitution and lower dispersion degree are susceptible to environmental degradation via nucleophilic substitution and hydroxyl radical attack,while direct photolysis of C10-SCCP congeners cannot readily occur due to the large ELUMO-EHOMO values.The chlorination effect and the conclusions were further checked with appropriate density functional theory(DFT) calculations.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61177079)the Open Fund of Key Laboratory of Electronics Engineering,College of Heilongjiang Province,China (Grant No. DZZD20100014)the Youth Science Foundation of Heilongjiang University,China (Grant No. QL200914)
文摘We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispersion relationship of gold film in a wavelength range from 537.12 nm to 905.52 nm,and our results accord well with the reported results by other authors.This method is particularly suited for studying the optical dispersion properties of thin metal films,because a series of dielectric constants over a wide spectral range can be determined simultaneously via only a single scan of the incident angle,thereby avoiding the repeated measurements required when using the angular modulation approach.
基金This work is financially supported by the National Natural Science Foundation of China (50409015).
文摘Based on the hyperbolic mild-slope equations derived by Copeland (1985), a numerical model is established in unstag- gered grids. A composite 4 th-order Adam-Bashforth-Moulton (ABM) scheme is used to solve the model in the time domain. Terms involving the first order spatial derivatives are differenced to O ( Δx )4accuracy utilizing a five-point formula. The nonlinear dispersion relationship proposed by Kirby and Dalrymple (1986) is used to consider the nonlinear effect. A numerical test is performed upon wave propagating over a typical shoal. The agreement between the numerical and the experimental results validates the present model. Biodistribution and applications are also summarized.
基金This work was sponsored by the program"Major Directions of Renewed Research Lines, Chinese Academy of Sciences(KZCX2208)".
文摘Starting from the linear shallow-water equations and using Arakawa A-E and Z grids, a study is made of inertia-gravitational and Rossby waves in the six grids from the perspectives of frequency and group velocity. Results indicate that grids C, Z, and E thereof give smaller distortion compared to the others.
基金This work was financially supported by the Science Foundation of National Education Committee of China (Grant No.40106008) and by LED, South China Sea Institute of Oceanology, Chinese Academy of Sciences.
文摘A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wave velocity field is expressed in terms of the horizontal and vertical wave velocity components at an arbitrary water depth level. Linear operators are introduced to improve the accuracy of the kinematic condition at the sea bottom. The dynamic and kinematic conditions at the free surface are expressed in terms of wave velocity variables defined directly on the free surface. The new equations provide high accuracy of linear properties as well as nonlinear properties from shallow to deep water, and extend the applicable range of relative water depth in the case of opposing currents.
文摘We utilize the anomalous dispersion of planar photonic crystals near the dielectric band edge to control the wavelength-dependent propagation of light. We typically observe an angular swing of up to 10°as the input wavelength is changed from 1290 nm to 1310 rim, which signifies an angular dispersion of 0.5°/am ("Superprism" phenomenon). Such a strong angular dispersion is of the order required for WDM systems. By tuning the incident angle, light beams with up to 20° divergence were collimated over a 25 nm (1285 nm to 1310 nm) bandwidth using a triangular lattice ("Supercollimator" phenomenon). The wavelength collimating range can be extended from 25 nm to 40 nm by changing the lattice from triangular to square. These two devices can be realized in the same configuration, simply by tuning the wavelength. Sources of loss are discussed.
文摘A dynamic solution is presented for the propagation of waves in an electric-magneto-elastic plate composed of piezoelectric, piezomagnetic materials and elastic matrix. The electric-magneto-elastic plate is polarized along the thickness direction. The generalized displacements are expressed as the sum of the gradient of a scalar (dilatation wave) and the curl of a vector (shear wave). With the help of dynamic equilibrium equations and geometric equations, we can obtain dynamic equations of the dilatation wave and the shear wave. The conclusion that the types of the dilatation waves and the shear waves remain unchanged after being reflected by the boundary can be obtained through the analysis of these kinetic equations. The dispersion properties and phase velocity surface of the dilatation and shear wave can be obtained by solutions of dynamic equilibrium equations. Influences of the piezoelectric and piezomagnetic parameters on wave characteristics are discussed.
文摘We have characterized polarization dependent loss(PDL), differential group delay(DGD), and chromatic dispersion of an AWG and a simple method was proposed to estimate the chromatic dispersion from the measured DGD of the device.
文摘The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative hole size/was studied.
基金National Natural Science Foundation of China(52203100)Shaanxi Province Key Research and Development Plan Project(2023-YBGY-461)+1 种基金Fundamental Research Funds for the Central Universities(D5000240062)Innovation Capability Support Program of Shaanxi(2024RSCXTD-57)。
文摘With the vigorous development and huge demand for portable wearable devices,wearable electronics based on functional fibers continue to emerge in a wide range of energy storage,motion monitoring,disease prevention,electromagnetic interference(EMI)shielding,etc.MXene,as an emerging twodimensional inorganic compound,has shown great potential in functional fiber manufacturing and has attracted much research attention due to its own good mechanical properties,high electrical conductivity,excellent electrochemical properties and favorable processability.Herein,this paper reviews recent advances of MXene-based fibers.Speaking to MXene dispersions,the properties of MXene dispersions including dispersion stability,rheological properties and liquid crystalline properties are highlighted.The preparation techniques used to produce MXene-based fibers and application progress regarding MXene-based fibers into supercapacitors,sensors,EMI shielding and Joule heaters are summarized.Challenges and prospects surrounding the development of MXene-based fibers are proposed in future.This review aims to provide processing guidelines for MXene-based fiber manufacturing,thereby achieving more possibilities of MXene-based fibers in advanced applications with a view to injecting more vitality into the field of smart wearables.
基金supported by the National Natural Science Foundation of China (Nos.61077047 and 61107059)the Natural Science Foundation of Heilongjiang Province (No.A200914)the Research Fund for the Doctoral Program of Higher Education of China (No.200802171034)
文摘We demonstrate a new kind of multi-core photonic liquid crystal fibers (PLCFs) which have six liquid crystal cores arrayed in the ring-type geometry and separated by the air holes. Through analyzing the structure of this kind of PLCFs, it can be found that they have the ability to resist the structure deformation. Due to the effective index of the liquid crystal can be adjusted by temperature and wavelength, the energy in the six liquid crystal cores is increased with the temperature increasing and wavelength decreasing. The effective index of the PLCFs is decreased, the effective fundamental mode area is increased and the dispersion properties are gently affected with the wavelength increasing and temperature decreasing.
基金jointly supported by the Chinese Academy of Sciences (Nos. KZCX2-YW-BR-25, XDB14030500 and YSW2013B01)the National High Technology Research and Development Program (863) of China (No. 2013AA065201)
文摘Short-chain chlorinated paraffins(SCCPs) are still controversial candidates for inclusion in the Stockholm Convention.The inherent mixture nature of SCCPs makes it rather difficult to explore their environmental behaviors.A virtual molecule library of 42,720 C10-SCCP congeners covering the full structure spectrum was constructed.We explored the structural effects on the thermodynamic parameters and environmental degradability of C10-SCCPs through semi-empirical quantum chemical calculations.The thermodynamic properties were acquired using the AM1 method,and frontier molecular orbital analysis was carried out to obtain the EHOMO,ELUMO and ELUMO-EHOMO for degradability exploration at the same level.The influence of the chlorination degree(NCl on the relative stability and environmental degradation was elucidated.A novel structural descriptor,μ,was proposed to measure the dispersion of the chlorine atoms within a molecule.There were significant correlations between thermodynamic values and NCl,while the reported NCl-dependent pollution profile of C10-SCCPs in environmental samples was basically consistent with the predicted order of formation stability of C10-SCCP congeners.In addition,isomers with largeμ showed higher relative stability than those with small μ.This could be further verified by the relationship between μ and the reactivity of nucleophilic substitution and · OH attack respectively.The C10-SCCP congeners with less Cl substitution and lower dispersion degree are susceptible to environmental degradation via nucleophilic substitution and hydroxyl radical attack,while direct photolysis of C10-SCCP congeners cannot readily occur due to the large ELUMO-EHOMO values.The chlorination effect and the conclusions were further checked with appropriate density functional theory(DFT) calculations.