Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams...Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams.In this study,numerical solutions are calculated using the generalized reflection–transmission coefficient method for the dispersion curves of Love channel waves in vertical transversely isotropic(VTI)and horizontal transversely isotropic(HTI)medium models.Moreover,the frequency dispersion characteristics of Love channel waves in several typical transversely isotropic models are analyzed.We fi nd that the dispersion curves for isotropic and VTI media diff er signifi cantly.In addition,the phase and Airy-phase velocities in VTI media are higher than those in isotropic media.Thus,neglecting this difference in practical channel wave detection will result in large detection errors.The dispersion curves for the isotropic and HTI media do not differ signifi cantly,and the Airy-phase velocities of various modes are similar.The group-velocity curve for a coal seam model containing a dirt band is found to be extremely irregular.The fundamental-mode Airy phase is not pronounced,but the fi rst-mode Airy phase can be clearly observed.Hence,fi rst-mode channel waves are suitable for detecting dirt bands.展开更多
The dispersion characteristics of shallow water can be described by the dispersion curves,which contain substantial ocean parameter information.A fast ocean parameter inversion method based on dispersion curves with a...The dispersion characteristics of shallow water can be described by the dispersion curves,which contain substantial ocean parameter information.A fast ocean parameter inversion method based on dispersion curves with a single hydrophone is presented in this paper.The method is achieved through Bayesian theory.Several sets of dispersion curves extracted from measured data are used as the input function.The inversion is performed by matching a replica calculated with a dispersion formula.The bottom characteristics can be described by the bottom reflection phase shift parameter P.The propagation range and the depth can be inverted quickly when the seabed parameters are represented by on parameter P.The inversion results improve the inversion efficiency of the seabed parameters.Consequently,the inversion efficiency and accuracy are improved while the number of inversion parameters is decreased and the computational speed of replica is increased.The inversion results have lower error than the reference values,and the dispersion curves calculated with inversion parameters are also in good agreement with extracted curves from measured data;thus,the effectiveness of the inversion method is demonstrated.展开更多
The number of dispersion curves increases significantly when the scale of a short-period dense array increases.Owing to a substantial increase in data volume,it is important to quickly evaluate dispersion curve qualit...The number of dispersion curves increases significantly when the scale of a short-period dense array increases.Owing to a substantial increase in data volume,it is important to quickly evaluate dispersion curve quality as well as select the available dispersion curve.Accordingly,this study quantitatively evaluated dispersion curve quality by training a convolutional neural network model for ambient noise tomography using a short-period dense array.The model can select high-quality dispersion curves that exhibit a≤10%difference between the results of manual screening and the proposed model.In addition,this study established a dispersion curve loss function by analyzing the quality of the dispersion curve and the corresponding influencing factors,thereby estimating the number of available dispersion curves for the existing observation systems.Furthermore,a Monte Carlo simulation experiment is used to illustrates the station-pair interval distance probability density function,which is independent of station number in the observational system with randomly deployed stations.The results suggested that the straight-line length should exceed 15 km to ensure that loss rate of dispersion curves remains<0.5,while maintaining the threshold ambient noise tomography accuracy within the study area.展开更多
Existing sequential parameter estimation methods use the acoustic pressure of a line array as observations. The modal dispersion curves are employed to estimate the sound speed profile(SSP) and geoacoustic parameter...Existing sequential parameter estimation methods use the acoustic pressure of a line array as observations. The modal dispersion curves are employed to estimate the sound speed profile(SSP) and geoacoustic parameters based on the ensemble Kalman filter. The warping transform is implemented to the signals received by a single hydrophone to obtain the dispersion curves. The experimental data are collected at a range-independent shallow water site in the South China Sea. The results indicate that the SSPs are well estimated and the geoacoustic parameters are also well determined. Comparisons of the observed and estimated modal dispersion curves show good agreement.展开更多
The utilization of urban underground space in a smart city requires an accurate understanding of the underground structure.As an effective technique,Rayleigh wave exploration can accurately obtain information on the s...The utilization of urban underground space in a smart city requires an accurate understanding of the underground structure.As an effective technique,Rayleigh wave exploration can accurately obtain information on the subsurface.In particular,Rayleigh wave dispersion curves can be used to determine the near-surface shear-wave velocity structure.This is a typical multiparameter,high-dimensional nonlinear inverse problem because the velocities and thickness of each layer must be inverted simultaneously.Nonlinear methods such as simulated annealing(SA)are commonly used to solve this inverse problem.However,SA controls the iterative process though temperature rather than the error,and the search direction is random;hence,SA always falls into a local optimum when the temperature setting is inaccurate.Specifically,for the inversion of Rayleigh wave dispersion curves,the inversion accuracy will decrease with an increasing number of layers due to the greater number of inversion parameters and large dimension.To solve the above problems,we convert the multiparameter,highdimensional inverse problem into multiple low-dimensional optimizations to improve the algorithm accuracy by incorporating the principle of block coordinate descent(BCD)into SA.Then,we convert the temperature control conditions in the original SA method into error control conditions.At the same time,we introduce the differential evolution(DE)method to ensure that the iterative error steadily decreases by correcting the iterative error direction in each iteration.Finally,the inversion stability is improved,and the proposed inversion method,the block coordinate descent differential evolution simulated annealing(BCDESA)algorithm,is implemented.The performance of BCDESA is validated by using both synthetic data and field data from western China.The results show that the BCDESA algorithm has stronger global optimization capabilities than SA,and the inversion results have higher stability and accuracy.In addition,synthetic data analysis also shows that BCDESA can avoid the problems of the conventional SA method,which assumes the S-wave velocity structure in advance.The robustness and adaptability of the algorithm are improved,and more accurate shear-wave velocity and thickness information can be extracted from Rayleigh wave dispersion curves.展开更多
In this paper,layered periodic foundations(LPFs)are numerically examined for their responses to longitudinal and transverse modes in the time and frequency domains.Three different unit-cells,i.e.,2-layer,4-layer,and 6...In this paper,layered periodic foundations(LPFs)are numerically examined for their responses to longitudinal and transverse modes in the time and frequency domains.Three different unit-cells,i.e.,2-layer,4-layer,and 6-layer unit-cells,comprising concrete/rubber,concrete/rubber/steel/rubber,and concrete/rubber/steel/rubber/lead/rubber materials,respectively,are taken into account.Also,the viscoelasticity behavior of the rubber is modeled with two factors,i.e.,a frequency-independent(FI)loss factor and a linear frequency-dependent(FD)loss factor.Following the extraction of the complex dispersion curves and the identification of the band gaps(BGs),the simulations of wave transmission in the time and frequency domains are performed using the COMSOL software.Subsequent parametric studies evaluate the effects of the rubber viscoelasticity models on the dispersion curves and the wave transmission for the longitudinal and transverse modes.The results show that considering the rubber viscoelasticity enhances the wave attenuation performance.Moreover,the transverse-mode damping is more sensitive to the viscoelasticity model than its longitudinal counterpart.The 6-layer unit-cell LPF exhibits the lowest BG,ranging from 4.8 Hz to 6.5 Hz.展开更多
Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.I...Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.In a layered model with increasing layer velocity,the phase velocity of the Rayleigh wave varies between the S-wave velocity of the bottom half-space and that of the classical Rayleigh wave propagated in a supposed half-space formed by the parameters of the top layer.If the phase velocity is the same as the P-or S-wave velocity of the layer,which is called the critical mode or critical phase velocity of surface waves,the general solution of the wave equation is not a homogeneous(expressed by trigonometric functions)or inhomogeneous(expressed by exponential functions)plane wave,but one whose amplitude changes linearly with depth(expressed by a linear function).Theories based on a general solution containing only trigonometric or exponential functions do not apply to the critical mode,owing to the singularity at the critical phase velocity.In this study,based on the classical framework of generalized reflection and transmission coefficients,the propagation of surface waves in horizontally layered media was studied by introducing a solution for the linear function at the critical phase velocity.Therefore,the eigenvalues and eigenfunctions of the critical mode can be calculated by solving a singular problem.The eigendisplacement characteristics associated with the critical phase velocity were investigated for different layered models.In contrast to the normal mode,the eigendisplacement associated with the critical phase velocity exhibits different characteristics.If the phase velocity is equal to the S-wave velocity in the bottom half-space,the eigendisplacement remains constant with increasing depth.展开更多
Transient Rayleigh wave detection is a high-precision nondestructive detection method.At present,it has been widely used in shallow exploration,but rarely used in tunnel lining quality detection.Through the tunnel lin...Transient Rayleigh wave detection is a high-precision nondestructive detection method.At present,it has been widely used in shallow exploration,but rarely used in tunnel lining quality detection.Through the tunnel lining physical model experiment,the layout defects of the double-layer reinforcement lining area were detected and the Rayleigh wave velocity profile and dispersion curve were analyzed after data process-ing,which finally verified the feasibility and accuracy of Rayleigh wave method in detecting the tunnel lining void area.The results show that the method is not affected by the reinforcement inside the lining,the shallow detection is less disturbed and the accuracy is higher,and the data will fluctuate slightly with the deepening of the detection depth.At the same time,this method responds quite accurately to the thickness of the concrete,allowing for the assessment of the tunnel lining’s lack of compactness.This method has high efficiency,good reliability,and simple data processing,and is suitable for nondestructive detection of internal defects of tun-nel lining structure.展开更多
The universal cluster expansion technique was used in this study to determine the binary phase diagrams for the transition metal carbonate precursors MCO3(M:Mn,Ni,Co).The use of mixed cathode materials in lithium-ion ...The universal cluster expansion technique was used in this study to determine the binary phase diagrams for the transition metal carbonate precursors MCO3(M:Mn,Ni,Co).The use of mixed cathode materials in lithium-ion batteries such as NMC(Ni,Mn and Co)formulations,is a strategic approach to optimize performance,enhance safety and address cost and environmental considerations in the rapidly evolving field of energy storage.This study focuses on the cost issue related to lithium ion batteries by investigating the manganese rich NMC since manganese is more abundant and cost-effective.We doped MnCO3 with nickel and doped MnCO3 with cobalt then ran cluster expansion calculations to generate binary phases.The binary phase diagrams generated indicated that doping MnCO3 with nickel favours the Mn-rich side,while doping MnCO3 with cobalt favours 50%Mn-rich and 50%Co-rich.We further extracted the most stable structures from both binary diagrams and determined their electronic,mechanical and vibrational stabilities using DFT(density functional theory)calculations within the LDA(local gradient approximation)with Hubbard parameter(U).The electronic properties revealed that both materials are semiconductors due to their narrow energy band gap obtained while the mechanical properties showed that structures are mechanically stable since their necessary conditions for trigonal and triclinic systems were satisfied.展开更多
It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations...It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.展开更多
This paper presents a comprehensive treatment of the parametric sensitivity and runaway in fixed bed reactors with one dimensional pseudo homogeneous dispersion model (ODDM). In this case, we find the existence of m...This paper presents a comprehensive treatment of the parametric sensitivity and runaway in fixed bed reactors with one dimensional pseudo homogeneous dispersion model (ODDM). In this case, we find the existence of multiplicity and determine the runaway criterion through the critical isodisper sion curve. The calculated results indicate when the axial dispersion is relatively small, the impact of the axial dispersion on the parametric sensitivity may be neglected; but when the axial dispersion is large, this impact must be considered.展开更多
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear globa...At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.展开更多
Surface wave methods are becoming increasingly popular in many geotechnical applications and in earthquake seismology due to their noninvasive characteristics.Inverse surface wave dispersion curves are a crucial step ...Surface wave methods are becoming increasingly popular in many geotechnical applications and in earthquake seismology due to their noninvasive characteristics.Inverse surface wave dispersion curves are a crucial step in most surface wave methods.Many inversion methods have been applied to surface wave dispersion curve inversion,including linearized inversion and nonlinearized inversion methods.In this study,a hybrid inversion method of Damped Least Squares(DLS) with Very Fast Simulated Annealing(VFSA) is developed for multi-mode Rayleigh wave dispersion curve inversion.Both synthetic and in situ fi eld data were used to verify the validity of the proposed method.The results show that the proposed method is superior to the conventional VFSA method in aiming at global minimum,especially when parameter searching space is adjacent to real values of the parameters.The advantage of the new method is that it retains both the merits of VFSA for global search and DLS for local search.At high temperatures,the global search dominates the runs,while at a low temperatures,the local search dominates the runs.Thus,at low temperatures,the proposed method can almost directly approach the actual model.展开更多
Based on the nonlinear theory of acoustoelasticity, considering the triaxial terrestrial stress, the fluid static pressure in the borehole and the fluid nonlinear effect jointly, the dispersion curves of the monopole ...Based on the nonlinear theory of acoustoelasticity, considering the triaxial terrestrial stress, the fluid static pressure in the borehole and the fluid nonlinear effect jointly, the dispersion curves of the monopole Stoneley wave and dipole flexural wave prop- agating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method. The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed. The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant. The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction. The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress, the superimposed stress and the fluid static pressure. The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy. This makes the intersection of flexural wave dispersion curves not distinguishable. The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.展开更多
In the present paper, we report on the results of various thermodynamic properties of 3C-SiC at high pressure and temperature using first principles calculations. We use the plane-wave pseudopotential density function...In the present paper, we report on the results of various thermodynamic properties of 3C-SiC at high pressure and temperature using first principles calculations. We use the plane-wave pseudopotential density functional theory as im- plemented in Quantum ESPRESSO code for calculating various cohesive properties in ambient condition. Further, ionic motion at a finite temperature is taken into account using the quasiharmonic Debye model. The calculated thermody- namic properties, phonon dispersion curves, and phonon densities of states at different temperatures and structural phase transitions at high pressures are found to be in good agreement with experimental and other theoretical results.展开更多
By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Base...By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Based on the relative relation of wave velocities of the half-space and the beam, four cases with the combination of different parameters of the half-space and the beam, the system of soft beam and hard half-space, the system of sub-soft beam and hard half- space, the system of sub-hard beam and soft half-space, and the system of hard beam and soft half-space are considered. The critical velocities of the moving load are studied using dispersion curves. It is found that critical velocities of the moving load on the Timoshenko beam depend on the relative relation of wave velocities of the half-space and the beam. The Rayleigh wave velocity in the half-space is always a critical velocity and the response of the system will be infinite when the load velocity reaches it. For the system of soft beam and hard half-space, wave velocities of the beam are also critical velocities. Besides the shear wave velocity of the beam, there is an additional minimum critical velocity for the system of sub-soft beam and hard half-space. While for systems of (sub-) hard beams and soft half-space, wave velocities of the beam are no longer critical ones. Comparison with the Euler-Bernoulli beam shows that the critical velocities and response of the two types of beams are much different for the system of (sub-) soft beam and hard half-space but are similar to each other for the system of (sub-) hard beam and soft half space. The largest displacement of the beam is almost at the location of the load and the displacement along the beam is almost symmetrical if the load velocity is smaller than the minimum critical velocity (the shear wave velocity of the beam for the system of soft beam and hard half-space). The largest displacement of the beam shifts behind the load and the asymmetry of the displacement along the beam increases with the increase of the load velocity due to the damping and wave racliation. The displacement of the beam at the front of the load is very small if the load velocity is larger than the largest wave velocity of the beam and the half space. The results of the present study provide attractive theoretical and practical references for the analysis of ground vibration induced by the high-speed train.展开更多
Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the...Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the passive source surface-wave method is introduced into the site engineering seismic survey and practically applied in an engineering site of Shijingshan District. By recording the ubiquitous weak vibration on the earth surface, extract the dispersion curve from the surface-wave components using the SPAC method and obtain the shear-wave velocity structure from inversion. Over the depth of 42 m under- ground, it totally consists of five layers with interface depth of 3.31, 4.50, 7.23, 17.41, and 42.00 m; and shear-wave velocity of 144.0, 198.3, 339.4, 744.2, and 903.7 m/s, respectively. The inversion result is used to evaluate site classification, determine the maximum shear modulus of soil, provide basis for further seismic hazard analysis and site assessment or site zoning, etc. The result shows that the passive source surface-wave method is feasible in the site engineering seismic survey and can replace boreholes,shorten survey period, and reduce engineering cost to some extent.展开更多
An analytical study is presented on the modal dispersion characteristics, group velocity, and effective group, as well as the phase index of a ternary one dimensional plasma photonic crystal for an obliquely incident ...An analytical study is presented on the modal dispersion characteristics, group velocity, and effective group, as well as the phase index of a ternary one dimensional plasma photonic crystal for an obliquely incident electromagnetic wave considering the effect of collisions in plasma layers. The dispersion relation is derived by using the transfer matrix method and the boundary conditions based on electromagnetic theory. The dispersion curves are plotted for both the normal photonic band gap structure and the absorption photonic band gap structure. It is found that the increase in the angle of incidence shifts the photonic band gap toward higher frequencies. Also, the cutoff frequency is independent of collisions.展开更多
In this paper, a boundary element formulation in the wave-number space domain for solving the wave equation for a borehole with arbitrary shape in acoustic logging problems is presented. The problem is treated as a tw...In this paper, a boundary element formulation in the wave-number space domain for solving the wave equation for a borehole with arbitrary shape in acoustic logging problems is presented. The problem is treated as a two-dimensional medium with the discrete wave- number method in the vertical direction. The method is validated by comparing the results obtained by this method with those obtained by the finite-difference method. The method is used to study the effect on wave propagation in a vertical borehole of a vertical fracture. For a monopole source, the dispersion curves for Stoneley waves yield three branches. For dipole and quadrupole sources, different orientations of the source yield different results. When the dipole source is orthogonal to the fracture, the dispersion curve is similar to that of the open hole, while the curves are quite different when the source is parallel to the fracture. These characteristics enable us to determine the orientation of the vertical fracture.展开更多
The application of surface acoustic waves(SAWs) for thickness measurement is presented. By studying the impact of film thickness h on the dispersion phenomenon of surface acoustic waves, a method for thickness deter...The application of surface acoustic waves(SAWs) for thickness measurement is presented. By studying the impact of film thickness h on the dispersion phenomenon of surface acoustic waves, a method for thickness determination based on theoretical dispersion curve v( fh) and experimental dispersion curve v( f) is developed. The method provides a series of thickness values at different frequencies f, and the mean value is considered as the final result of the measurement. The thicknesses of six interconnect films are determined by SAWs, and the results are compared with the manufacturer's data.The relative differences are in the range from 0.4% to 2.18%, which indicates that the surface acoustic wave technique is reliable and accurate in the nondestructive thickness determination for films. This method can be generally used for fast and direct determination of film thickness.展开更多
基金supported by the National Key R&D Program of China (No. 2018YFC0807804-3)Key R&D Program of Anhui Province (No. 1804a0802213)Scientifi c Research Foundation for the introduction talent of Anhui University of Science and Technology。
文摘Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams.In this study,numerical solutions are calculated using the generalized reflection–transmission coefficient method for the dispersion curves of Love channel waves in vertical transversely isotropic(VTI)and horizontal transversely isotropic(HTI)medium models.Moreover,the frequency dispersion characteristics of Love channel waves in several typical transversely isotropic models are analyzed.We fi nd that the dispersion curves for isotropic and VTI media diff er signifi cantly.In addition,the phase and Airy-phase velocities in VTI media are higher than those in isotropic media.Thus,neglecting this difference in practical channel wave detection will result in large detection errors.The dispersion curves for the isotropic and HTI media do not differ signifi cantly,and the Airy-phase velocities of various modes are similar.The group-velocity curve for a coal seam model containing a dirt band is found to be extremely irregular.The fundamental-mode Airy phase is not pronounced,but the fi rst-mode Airy phase can be clearly observed.Hence,fi rst-mode channel waves are suitable for detecting dirt bands.
基金The Scientific Research Foundation of Jiangsu University of Science and Technology for Recruited Talents under contract No.1032931907the Basic Science (Natural Science) General Program of Jiangsu Province Higher Education Institutions under contract No.21KJD140001。
文摘The dispersion characteristics of shallow water can be described by the dispersion curves,which contain substantial ocean parameter information.A fast ocean parameter inversion method based on dispersion curves with a single hydrophone is presented in this paper.The method is achieved through Bayesian theory.Several sets of dispersion curves extracted from measured data are used as the input function.The inversion is performed by matching a replica calculated with a dispersion formula.The bottom characteristics can be described by the bottom reflection phase shift parameter P.The propagation range and the depth can be inverted quickly when the seabed parameters are represented by on parameter P.The inversion results improve the inversion efficiency of the seabed parameters.Consequently,the inversion efficiency and accuracy are improved while the number of inversion parameters is decreased and the computational speed of replica is increased.The inversion results have lower error than the reference values,and the dispersion curves calculated with inversion parameters are also in good agreement with extracted curves from measured data;thus,the effectiveness of the inversion method is demonstrated.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0701)the Fund from the Key Laboratory of Deep-Earth Dynamics of the Ministry of Natural Resources(No.J1901-38)+1 种基金the National Natural Science Foundation of China(Nos.42174121 and 91962109)the China Geological Survey Project(No.DD20190001).
文摘The number of dispersion curves increases significantly when the scale of a short-period dense array increases.Owing to a substantial increase in data volume,it is important to quickly evaluate dispersion curve quality as well as select the available dispersion curve.Accordingly,this study quantitatively evaluated dispersion curve quality by training a convolutional neural network model for ambient noise tomography using a short-period dense array.The model can select high-quality dispersion curves that exhibit a≤10%difference between the results of manual screening and the proposed model.In addition,this study established a dispersion curve loss function by analyzing the quality of the dispersion curve and the corresponding influencing factors,thereby estimating the number of available dispersion curves for the existing observation systems.Furthermore,a Monte Carlo simulation experiment is used to illustrates the station-pair interval distance probability density function,which is independent of station number in the observational system with randomly deployed stations.The results suggested that the straight-line length should exceed 15 km to ensure that loss rate of dispersion curves remains<0.5,while maintaining the threshold ambient noise tomography accuracy within the study area.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012,11774374,11404366 and41561144006
文摘Existing sequential parameter estimation methods use the acoustic pressure of a line array as observations. The modal dispersion curves are employed to estimate the sound speed profile(SSP) and geoacoustic parameters based on the ensemble Kalman filter. The warping transform is implemented to the signals received by a single hydrophone to obtain the dispersion curves. The experimental data are collected at a range-independent shallow water site in the South China Sea. The results indicate that the SSPs are well estimated and the geoacoustic parameters are also well determined. Comparisons of the observed and estimated modal dispersion curves show good agreement.
基金Supported by National Natural Science Foundation of China(NOs.41974150,42174158,42174151,41804126)a supporting program for outstanding talent of the University of Electronic Science and Technology of China(No.2019-QR-01)+1 种基金Project of Basic Scientific Research Operating Expenses of Central Universities(ZYGX2019J071ZYGX 2020J013).
文摘The utilization of urban underground space in a smart city requires an accurate understanding of the underground structure.As an effective technique,Rayleigh wave exploration can accurately obtain information on the subsurface.In particular,Rayleigh wave dispersion curves can be used to determine the near-surface shear-wave velocity structure.This is a typical multiparameter,high-dimensional nonlinear inverse problem because the velocities and thickness of each layer must be inverted simultaneously.Nonlinear methods such as simulated annealing(SA)are commonly used to solve this inverse problem.However,SA controls the iterative process though temperature rather than the error,and the search direction is random;hence,SA always falls into a local optimum when the temperature setting is inaccurate.Specifically,for the inversion of Rayleigh wave dispersion curves,the inversion accuracy will decrease with an increasing number of layers due to the greater number of inversion parameters and large dimension.To solve the above problems,we convert the multiparameter,highdimensional inverse problem into multiple low-dimensional optimizations to improve the algorithm accuracy by incorporating the principle of block coordinate descent(BCD)into SA.Then,we convert the temperature control conditions in the original SA method into error control conditions.At the same time,we introduce the differential evolution(DE)method to ensure that the iterative error steadily decreases by correcting the iterative error direction in each iteration.Finally,the inversion stability is improved,and the proposed inversion method,the block coordinate descent differential evolution simulated annealing(BCDESA)algorithm,is implemented.The performance of BCDESA is validated by using both synthetic data and field data from western China.The results show that the BCDESA algorithm has stronger global optimization capabilities than SA,and the inversion results have higher stability and accuracy.In addition,synthetic data analysis also shows that BCDESA can avoid the problems of the conventional SA method,which assumes the S-wave velocity structure in advance.The robustness and adaptability of the algorithm are improved,and more accurate shear-wave velocity and thickness information can be extracted from Rayleigh wave dispersion curves.
文摘In this paper,layered periodic foundations(LPFs)are numerically examined for their responses to longitudinal and transverse modes in the time and frequency domains.Three different unit-cells,i.e.,2-layer,4-layer,and 6-layer unit-cells,comprising concrete/rubber,concrete/rubber/steel/rubber,and concrete/rubber/steel/rubber/lead/rubber materials,respectively,are taken into account.Also,the viscoelasticity behavior of the rubber is modeled with two factors,i.e.,a frequency-independent(FI)loss factor and a linear frequency-dependent(FD)loss factor.Following the extraction of the complex dispersion curves and the identification of the band gaps(BGs),the simulations of wave transmission in the time and frequency domains are performed using the COMSOL software.Subsequent parametric studies evaluate the effects of the rubber viscoelasticity models on the dispersion curves and the wave transmission for the longitudinal and transverse modes.The results show that considering the rubber viscoelasticity enhances the wave attenuation performance.Moreover,the transverse-mode damping is more sensitive to the viscoelasticity model than its longitudinal counterpart.The 6-layer unit-cell LPF exhibits the lowest BG,ranging from 4.8 Hz to 6.5 Hz.
基金supported by the National Natural Science Foundation of China(No.U1839209).
文摘Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.In a layered model with increasing layer velocity,the phase velocity of the Rayleigh wave varies between the S-wave velocity of the bottom half-space and that of the classical Rayleigh wave propagated in a supposed half-space formed by the parameters of the top layer.If the phase velocity is the same as the P-or S-wave velocity of the layer,which is called the critical mode or critical phase velocity of surface waves,the general solution of the wave equation is not a homogeneous(expressed by trigonometric functions)or inhomogeneous(expressed by exponential functions)plane wave,but one whose amplitude changes linearly with depth(expressed by a linear function).Theories based on a general solution containing only trigonometric or exponential functions do not apply to the critical mode,owing to the singularity at the critical phase velocity.In this study,based on the classical framework of generalized reflection and transmission coefficients,the propagation of surface waves in horizontally layered media was studied by introducing a solution for the linear function at the critical phase velocity.Therefore,the eigenvalues and eigenfunctions of the critical mode can be calculated by solving a singular problem.The eigendisplacement characteristics associated with the critical phase velocity were investigated for different layered models.In contrast to the normal mode,the eigendisplacement associated with the critical phase velocity exhibits different characteristics.If the phase velocity is equal to the S-wave velocity in the bottom half-space,the eigendisplacement remains constant with increasing depth.
基金Supported by Project of Natural Science Foundation of Jilin Province(No.20220101172JC).
文摘Transient Rayleigh wave detection is a high-precision nondestructive detection method.At present,it has been widely used in shallow exploration,but rarely used in tunnel lining quality detection.Through the tunnel lining physical model experiment,the layout defects of the double-layer reinforcement lining area were detected and the Rayleigh wave velocity profile and dispersion curve were analyzed after data process-ing,which finally verified the feasibility and accuracy of Rayleigh wave method in detecting the tunnel lining void area.The results show that the method is not affected by the reinforcement inside the lining,the shallow detection is less disturbed and the accuracy is higher,and the data will fluctuate slightly with the deepening of the detection depth.At the same time,this method responds quite accurately to the thickness of the concrete,allowing for the assessment of the tunnel lining’s lack of compactness.This method has high efficiency,good reliability,and simple data processing,and is suitable for nondestructive detection of internal defects of tun-nel lining structure.
基金This work was performed at MMC(Materials Modelling Centre)of the University of Limpopo and the CHPC(Centre for High Performance Computing)with the support of the South African Research Chair Initiative of the Department of Science and Technology is greatly appreciatedThe study was funded by the NRF(National Research Foundation)with grant number 128934,and this funding is really appreciated.
文摘The universal cluster expansion technique was used in this study to determine the binary phase diagrams for the transition metal carbonate precursors MCO3(M:Mn,Ni,Co).The use of mixed cathode materials in lithium-ion batteries such as NMC(Ni,Mn and Co)formulations,is a strategic approach to optimize performance,enhance safety and address cost and environmental considerations in the rapidly evolving field of energy storage.This study focuses on the cost issue related to lithium ion batteries by investigating the manganese rich NMC since manganese is more abundant and cost-effective.We doped MnCO3 with nickel and doped MnCO3 with cobalt then ran cluster expansion calculations to generate binary phases.The binary phase diagrams generated indicated that doping MnCO3 with nickel favours the Mn-rich side,while doping MnCO3 with cobalt favours 50%Mn-rich and 50%Co-rich.We further extracted the most stable structures from both binary diagrams and determined their electronic,mechanical and vibrational stabilities using DFT(density functional theory)calculations within the LDA(local gradient approximation)with Hubbard parameter(U).The electronic properties revealed that both materials are semiconductors due to their narrow energy band gap obtained while the mechanical properties showed that structures are mechanically stable since their necessary conditions for trigonal and triclinic systems were satisfied.
基金supported by the National Natural Science Foundation of China (Grant No. 40774099, 10874202 and 11134011)National 863 Program of China (Grant No. 2008AA06Z205)
文摘It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.
文摘This paper presents a comprehensive treatment of the parametric sensitivity and runaway in fixed bed reactors with one dimensional pseudo homogeneous dispersion model (ODDM). In this case, we find the existence of multiplicity and determine the runaway criterion through the critical isodisper sion curve. The calculated results indicate when the axial dispersion is relatively small, the impact of the axial dispersion on the parametric sensitivity may be neglected; but when the axial dispersion is large, this impact must be considered.
基金supported by the National Natural Science Foundation of China(No.41374123)
文摘At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
基金International Science&Technology Cooperation Program of China under Grant No.2011DFA71100the National Key Technology R&D Program under Grant No.2014BAK03B01the National Basic Research Program of China(973 Program)under Grant No.2007CB714201
文摘Surface wave methods are becoming increasingly popular in many geotechnical applications and in earthquake seismology due to their noninvasive characteristics.Inverse surface wave dispersion curves are a crucial step in most surface wave methods.Many inversion methods have been applied to surface wave dispersion curve inversion,including linearized inversion and nonlinearized inversion methods.In this study,a hybrid inversion method of Damped Least Squares(DLS) with Very Fast Simulated Annealing(VFSA) is developed for multi-mode Rayleigh wave dispersion curve inversion.Both synthetic and in situ fi eld data were used to verify the validity of the proposed method.The results show that the proposed method is superior to the conventional VFSA method in aiming at global minimum,especially when parameter searching space is adjacent to real values of the parameters.The advantage of the new method is that it retains both the merits of VFSA for global search and DLS for local search.At high temperatures,the global search dominates the runs,while at a low temperatures,the local search dominates the runs.Thus,at low temperatures,the proposed method can almost directly approach the actual model.
基金The project supported by the National Natural Science Foundation of China(10272004)The Special Science Foundation of the Doctoral Discipline of the Ministry of Education of China(20050001016)
文摘Based on the nonlinear theory of acoustoelasticity, considering the triaxial terrestrial stress, the fluid static pressure in the borehole and the fluid nonlinear effect jointly, the dispersion curves of the monopole Stoneley wave and dipole flexural wave prop- agating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method. The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed. The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant. The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction. The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress, the superimposed stress and the fluid static pressure. The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy. This makes the intersection of flexural wave dispersion curves not distinguishable. The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.
文摘In the present paper, we report on the results of various thermodynamic properties of 3C-SiC at high pressure and temperature using first principles calculations. We use the plane-wave pseudopotential density functional theory as im- plemented in Quantum ESPRESSO code for calculating various cohesive properties in ambient condition. Further, ionic motion at a finite temperature is taken into account using the quasiharmonic Debye model. The calculated thermody- namic properties, phonon dispersion curves, and phonon densities of states at different temperatures and structural phase transitions at high pressures are found to be in good agreement with experimental and other theoretical results.
基金Project supported by the National Natural Science Foundation of China (No.50538010) the Doctoral Education of the State Education Ministry of China (No.20040335083) Encouragement Fund for Young Teachers in University of Ministry of Education.
文摘By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Based on the relative relation of wave velocities of the half-space and the beam, four cases with the combination of different parameters of the half-space and the beam, the system of soft beam and hard half-space, the system of sub-soft beam and hard half- space, the system of sub-hard beam and soft half-space, and the system of hard beam and soft half-space are considered. The critical velocities of the moving load are studied using dispersion curves. It is found that critical velocities of the moving load on the Timoshenko beam depend on the relative relation of wave velocities of the half-space and the beam. The Rayleigh wave velocity in the half-space is always a critical velocity and the response of the system will be infinite when the load velocity reaches it. For the system of soft beam and hard half-space, wave velocities of the beam are also critical velocities. Besides the shear wave velocity of the beam, there is an additional minimum critical velocity for the system of sub-soft beam and hard half-space. While for systems of (sub-) hard beams and soft half-space, wave velocities of the beam are no longer critical ones. Comparison with the Euler-Bernoulli beam shows that the critical velocities and response of the two types of beams are much different for the system of (sub-) soft beam and hard half-space but are similar to each other for the system of (sub-) hard beam and soft half space. The largest displacement of the beam is almost at the location of the load and the displacement along the beam is almost symmetrical if the load velocity is smaller than the minimum critical velocity (the shear wave velocity of the beam for the system of soft beam and hard half-space). The largest displacement of the beam shifts behind the load and the asymmetry of the displacement along the beam increases with the increase of the load velocity due to the damping and wave racliation. The displacement of the beam at the front of the load is very small if the load velocity is larger than the largest wave velocity of the beam and the half space. The results of the present study provide attractive theoretical and practical references for the analysis of ground vibration induced by the high-speed train.
基金supported by National Natural Science Foundation of China (No. 41174085)Chinese Academy of Sciences (KZZD-EW-TZ-19)China Geological Survey (12120113101400)
文摘Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the passive source surface-wave method is introduced into the site engineering seismic survey and practically applied in an engineering site of Shijingshan District. By recording the ubiquitous weak vibration on the earth surface, extract the dispersion curve from the surface-wave components using the SPAC method and obtain the shear-wave velocity structure from inversion. Over the depth of 42 m under- ground, it totally consists of five layers with interface depth of 3.31, 4.50, 7.23, 17.41, and 42.00 m; and shear-wave velocity of 144.0, 198.3, 339.4, 744.2, and 903.7 m/s, respectively. The inversion result is used to evaluate site classification, determine the maximum shear modulus of soil, provide basis for further seismic hazard analysis and site assessment or site zoning, etc. The result shows that the passive source surface-wave method is feasible in the site engineering seismic survey and can replace boreholes,shorten survey period, and reduce engineering cost to some extent.
文摘An analytical study is presented on the modal dispersion characteristics, group velocity, and effective group, as well as the phase index of a ternary one dimensional plasma photonic crystal for an obliquely incident electromagnetic wave considering the effect of collisions in plasma layers. The dispersion relation is derived by using the transfer matrix method and the boundary conditions based on electromagnetic theory. The dispersion curves are plotted for both the normal photonic band gap structure and the absorption photonic band gap structure. It is found that the increase in the angle of incidence shifts the photonic band gap toward higher frequencies. Also, the cutoff frequency is independent of collisions.
基金Acknowledgements We thank the thoughtful comments from two anonymous reviewers. This work is partly supported by a contract with Schlumberger-Doll Research, Schlumberger and partly by the National Science Foundation of China under D40521002.
文摘In this paper, a boundary element formulation in the wave-number space domain for solving the wave equation for a borehole with arbitrary shape in acoustic logging problems is presented. The problem is treated as a two-dimensional medium with the discrete wave- number method in the vertical direction. The method is validated by comparing the results obtained by this method with those obtained by the finite-difference method. The method is used to study the effect on wave propagation in a vertical borehole of a vertical fracture. For a monopole source, the dispersion curves for Stoneley waves yield three branches. For dipole and quadrupole sources, different orientations of the source yield different results. When the dipole source is orthogonal to the fracture, the dispersion curve is similar to that of the open hole, while the curves are quite different when the source is parallel to the fracture. These characteristics enable us to determine the orientation of the vertical fracture.
基金Project supported by the National Natural Science Foundation of China(Grant No.61571319)
文摘The application of surface acoustic waves(SAWs) for thickness measurement is presented. By studying the impact of film thickness h on the dispersion phenomenon of surface acoustic waves, a method for thickness determination based on theoretical dispersion curve v( fh) and experimental dispersion curve v( f) is developed. The method provides a series of thickness values at different frequencies f, and the mean value is considered as the final result of the measurement. The thicknesses of six interconnect films are determined by SAWs, and the results are compared with the manufacturer's data.The relative differences are in the range from 0.4% to 2.18%, which indicates that the surface acoustic wave technique is reliable and accurate in the nondestructive thickness determination for films. This method can be generally used for fast and direct determination of film thickness.