1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this ...1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this work, we tackle the evolution of an initial coherent state in a Raman dispersion process which is also a nonlinear process. The process involves the inelastic scattering of a pho- ton when it is incident on a molecule. The photon loses some of its energy to the molecule or gains some from it, and so leaves the molecule with a lower or a higher frequency. The lower frequency components of the scattered radiation are called the Stokes lines and the higher frequency components are called the anti- Stokes lines. The Hamiltonian governing its dynamics is[3]展开更多
The regime of disturbance with natural or anthropogenic origin can lead to the destabilization or even to a mass mortality of benthic communities. Due to the heterogeneity of the disturbance there is a formation of pa...The regime of disturbance with natural or anthropogenic origin can lead to the destabilization or even to a mass mortality of benthic communities. Due to the heterogeneity of the disturbance there is a formation of patches in different stages of ecological succession. The aim of this study is to follow and describe the resilience in artificial disturbed sediment in a polluted bay in Rio de Janeiro. The sediment was collected, sterilized and placed inside corers (10 cmdiameter ×15 cmheight) in the same place where it was collected. We allocated the samples in two structures, the difference between them was that one was placed closed to the bottom and the other was placed50 cmheight. We found 2352 organisms distributed in 14 taxons. The class Polychaeta and the order Amphipoda showed the highest density in all the survey and treatments. We identified the factors influencing the scenarium: different mechanisms of dispersal, the position of the structures and life history of each group. Disturbance can be the main cause of the patch’s diversity found in estuaries and coastal areas. Because of this, monitoring of selected areas becomes an important tool to understand the regime of disturbance as a key factor structuring benthic communities in soft sediment, also suggesting a metapopulation dynamics.展开更多
Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured ...Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured with KODAK EKTAPRO EM Motion Analyzer and setting up mechanical models. Results\ Computational methods for fuel dispersion velocity in the acceleration stage is given and taken as a base for the study of fuel dispersion in the intermediate and the far area. Conclusion\ When the fuel flow velocity is higher than that of the explosion gas in the center cavity, the fuel divides with the explosion gas and its velocity of flow reaches a maximum. The acceleration stage ends at that time. The fuel dispersion velocity at this time is the initial conditions for numeral analyses of dispersion process in the intermediate and far areas.展开更多
Nanosized dispersive hexagonal magnesium hydroxide (Mg(OH)2) has been prepared using an ammonia- hydrothermal method. Citric acid and monoethanolamine (MEA) were added to the reaction system during the ammonia p...Nanosized dispersive hexagonal magnesium hydroxide (Mg(OH)2) has been prepared using an ammonia- hydrothermal method. Citric acid and monoethanolamine (MEA) were added to the reaction system during the ammonia precipitation and hydrothermal processes, respectively, to improve the crystallinity and dispersion of the (Mg(OH)2) particles. The resulting Mg(OH)2 samples obtained under the opti- mum preparation conditions were characterized by scanning electron microscopy, X-ray diffraction and thermal gravity analysis, which showed that this newly developed procedure afforded well-dispersed hexagonal nanoolates of Mg(OH)2 with a mean diameter of 246 nm.展开更多
Following the quantitative determination of dust cloud parameters, this study investigated the flame propagation through cornstarch dust clouds in a vertical duct of 780 mm height and 160×160 mm square cross sect...Following the quantitative determination of dust cloud parameters, this study investigated the flame propagation through cornstarch dust clouds in a vertical duct of 780 mm height and 160×160 mm square cross section, and gave particular attention to the effect of turbulence on flame characteristics. The turbulence induced by dust dispersion process was measured using a particle image velocimetry (PIV) system. Upward propagating dust flames were visualized with direct fight and shadow photography. The results show that a critical value of the turbulence intensity can be specified below which laminar flame propagation would be established. This transition condition is about 10 cm/s. The measured propagation speed of laminar flames appears to be in the range of 0.45-0.56 m/s, consistent with the measurements reported in the literature. For the present experimental conditions, the flame speed is little sensitive to the variations in dust concentration. Some information on the flame structure was revealed from the shadow records, showing the typical heterogeneous feature of dust combustion process.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10775097 and 10475056)
文摘1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this work, we tackle the evolution of an initial coherent state in a Raman dispersion process which is also a nonlinear process. The process involves the inelastic scattering of a pho- ton when it is incident on a molecule. The photon loses some of its energy to the molecule or gains some from it, and so leaves the molecule with a lower or a higher frequency. The lower frequency components of the scattered radiation are called the Stokes lines and the higher frequency components are called the anti- Stokes lines. The Hamiltonian governing its dynamics is[3]
文摘The regime of disturbance with natural or anthropogenic origin can lead to the destabilization or even to a mass mortality of benthic communities. Due to the heterogeneity of the disturbance there is a formation of patches in different stages of ecological succession. The aim of this study is to follow and describe the resilience in artificial disturbed sediment in a polluted bay in Rio de Janeiro. The sediment was collected, sterilized and placed inside corers (10 cmdiameter ×15 cmheight) in the same place where it was collected. We allocated the samples in two structures, the difference between them was that one was placed closed to the bottom and the other was placed50 cmheight. We found 2352 organisms distributed in 14 taxons. The class Polychaeta and the order Amphipoda showed the highest density in all the survey and treatments. We identified the factors influencing the scenarium: different mechanisms of dispersal, the position of the structures and life history of each group. Disturbance can be the main cause of the patch’s diversity found in estuaries and coastal areas. Because of this, monitoring of selected areas becomes an important tool to understand the regime of disturbance as a key factor structuring benthic communities in soft sediment, also suggesting a metapopulation dynamics.
文摘Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured with KODAK EKTAPRO EM Motion Analyzer and setting up mechanical models. Results\ Computational methods for fuel dispersion velocity in the acceleration stage is given and taken as a base for the study of fuel dispersion in the intermediate and the far area. Conclusion\ When the fuel flow velocity is higher than that of the explosion gas in the center cavity, the fuel divides with the explosion gas and its velocity of flow reaches a maximum. The acceleration stage ends at that time. The fuel dispersion velocity at this time is the initial conditions for numeral analyses of dispersion process in the intermediate and far areas.
文摘Nanosized dispersive hexagonal magnesium hydroxide (Mg(OH)2) has been prepared using an ammonia- hydrothermal method. Citric acid and monoethanolamine (MEA) were added to the reaction system during the ammonia precipitation and hydrothermal processes, respectively, to improve the crystallinity and dispersion of the (Mg(OH)2) particles. The resulting Mg(OH)2 samples obtained under the opti- mum preparation conditions were characterized by scanning electron microscopy, X-ray diffraction and thermal gravity analysis, which showed that this newly developed procedure afforded well-dispersed hexagonal nanoolates of Mg(OH)2 with a mean diameter of 246 nm.
文摘Following the quantitative determination of dust cloud parameters, this study investigated the flame propagation through cornstarch dust clouds in a vertical duct of 780 mm height and 160×160 mm square cross section, and gave particular attention to the effect of turbulence on flame characteristics. The turbulence induced by dust dispersion process was measured using a particle image velocimetry (PIV) system. Upward propagating dust flames were visualized with direct fight and shadow photography. The results show that a critical value of the turbulence intensity can be specified below which laminar flame propagation would be established. This transition condition is about 10 cm/s. The measured propagation speed of laminar flames appears to be in the range of 0.45-0.56 m/s, consistent with the measurements reported in the literature. For the present experimental conditions, the flame speed is little sensitive to the variations in dust concentration. Some information on the flame structure was revealed from the shadow records, showing the typical heterogeneous feature of dust combustion process.