Concerns with stress intensity factors for cracks emanating from an elliptical hole in a rectangular plate under biaxial loads by means of a boundary element method which consists of non-singular displacement disconti...Concerns with stress intensity factors for cracks emanating from an elliptical hole in a rectangular plate under biaxial loads by means of a boundary element method which consists of non-singular displacement discontinuity element presented by Crouch and Starfied and crack-tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack-tip displacement discontinuity .clement is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and other boundaries. The present numerical re- suits further illustrate that the present numerical approach is very effective and accurate for calculating stress intensity factors of complex cracks in a finite plate and can reveal the effect of the biaxial load and the cracked body geometry on stress intensity factors.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.10272037).
文摘Concerns with stress intensity factors for cracks emanating from an elliptical hole in a rectangular plate under biaxial loads by means of a boundary element method which consists of non-singular displacement discontinuity element presented by Crouch and Starfied and crack-tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack-tip displacement discontinuity .clement is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and other boundaries. The present numerical re- suits further illustrate that the present numerical approach is very effective and accurate for calculating stress intensity factors of complex cracks in a finite plate and can reveal the effect of the biaxial load and the cracked body geometry on stress intensity factors.