Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling softw...The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling software developed by RIPED (Yuan, et al. 1995). The recovery coefficient, remaining oil saturation, sweep efficiency and displacement efficiency were calculated and correlated layer by layer. The results show that the sweep efficiency and displacement efficiency work different effects on different layers in the severely heterogeneous reservoir. The study shows that the displacement efficiency and sweep efficiency play different roles in different layers for severely heterogeneous reservoirs. The displacement efficiency contributes mainly to the high permeability zones, the sweep efficiency to the low permeability zones, both of which contribute to the middle permeable zones. To improve the sweep efficiency in the low permeability zones is of significance for enhancing the whole recovery of the reservoir. It is an important path for improving the effectiveness of chemical flooding in the severely heterogeneous reservoirs to inject ternary combination slug after profile control.展开更多
In this paper, a series of experiments, including atomic force microscope (AFM), environmental scanning electron microscope (ESEM), and core displacement tests were conducted to investigate the effect of polymer s...In this paper, a series of experiments, including atomic force microscope (AFM), environmental scanning electron microscope (ESEM), and core displacement tests were conducted to investigate the effect of polymer solution structure on solution properties and oil displacement efficiency. The results show that in the HPAM solution polymer coils were formed and then aggregated into a loose structure, while the HAP2010 solution formed a strong network structure, which would significantly improve the solution viscosity and flow resistance so as to upgrade the capacity of piston-like oil displacement in highly permeable porous media. Meanwhile, the retention of the HAP2010 solution at pore throats were also enhanced, which could reduce water production during subsequent water flooding and enlarge the swept volume during polymer flooding. Therefore, enhancing the interaction among polymer molecules is an effective way to improve the displacement efficiency of polymer solutions in heavy oil reservoirs with high permeability.展开更多
Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement ef...Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement efficiency. Reservoir pore pressure will fluctuate to some extent during a CO2 flood, causing a change in effective confining pressure. The result is rock deformation and a reduction in permeability with the reduction in fracture permeability, causing increased flow resistance in the fracture space. Simultaneously, gas cross flowing along the fractures is partially restrained. In this work, the effect of stress changes on permeability was studied through a series of flow experiments. The change in the flowrate distribution in a matrix block and contained fracture with an increase in effective pressure were analyzed. The results lead to an implicit comparison which shows that permeability of fractured core decreases sharply with an increase in effective confining pressure. The fracture flowrate ratio declines and the matrix flowrate ratio increases. Fracture flow will partially divert to the matrix block with the increase in effective confining pressure, improving gas displacement efficiency.展开更多
Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability r...Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability reservoir in heterogeneous reservoir. According to the core flooding experiment analyzed longitudinal heterogeneous models, single surfactant and a single polymer and polymer flooding of table binary complex drive effect. Studies show that binary combination flooding recovery effect is best, followed by polymer flooding, minimum of surfactant flooding, in heterogeneous reservoir.展开更多
Displacement efficiency is an important index of water drive oilfield. This article takes water drive oilfield as the object to analyze the influence factors of displacement efficiency in limit water cut stage of wate...Displacement efficiency is an important index of water drive oilfield. This article takes water drive oilfield as the object to analyze the influence factors of displacement efficiency in limit water cut stage of water drive oilfield. The displacement efficiency experimental data of 99 cores which come from 65 development wells of 34 oilfields have been collected. The authors use the method of multiple linear regression analysis to establish a new empirical formula of displacement efficiency. The relative error of the empirical formula is less than 7% compared to the experimental data.展开更多
The need to have naval units ever faster pushed the ship design to design hull shapes with increasingly higher performance thanks to the use of lightweight materials such as aluminum, and more powerful engines, etc., ...The need to have naval units ever faster pushed the ship design to design hull shapes with increasingly higher performance thanks to the use of lightweight materials such as aluminum, and more powerful engines, etc., but without substantially modifying the traditional forms of hull. The hull patented Monotricat high hydrodynamic efficiency and energy saving it represents an evolution of the traditional architectures of the hulls, as its shape is adapted to recover wave formation engendered from the bow and sprays associated with it so as to reduce the resistance to the benefit of the speed, and navigating in displacement at speeds of planing hulls with an efficiency of about 20%. The patented hull Monotricat represents the overcoming of distinction between displacement and planing hulls, because, unlike previous solutions, the hull conventionally called Monotricat is the first displacement hull that can navigate at both displacement and planning speeds, with a resistance curve almost straight, maintaining the characteristics of a displacement hull, since it combines the characteristics of displacement and planning hull. It presents an innovative architecture that could be defined as a hybrid between a monohull and catamaran, navigating on spray self-produced. The combination of these three types of naval hulls allows it to ensure: safety, comfort navigation, best seakeeping and maneuverability in restricted waters, stability, reduction of resistance to motion, cost management, regularity on the routes even in adverse weather-sea. These characteristics of the hull have been studied, tested and validated by leading research institutes and universities with more ameliorative results in each subsequent experimentation, reported in the present work, which demonstrated a greater hydrodynamic efficiency compared to conventional hulls of 20%.展开更多
Molecular dynamics method was used to establish composite wall/inorganic nanopores of three pore sizes, three shale oil systems, five CO_(2)-cosolvent systems, and pure CO_(2) system. The process of CO_(2)-cosolvent d...Molecular dynamics method was used to establish composite wall/inorganic nanopores of three pore sizes, three shale oil systems, five CO_(2)-cosolvent systems, and pure CO_(2) system. The process of CO_(2)-cosolvent displacement of crude oil in shale nanopores and carbon storage was simulated and the influencing factors of displacement and storage were analyzed. It is shown that the attraction of the quartz wall to shale oil increases with the degree of hydroxylation. The higher the degree of quartz hydroxylation, the more difficult it is to extract the polar components of shale oil. Nanopore size also has a great impact on shale oil displacement efficiency. The larger the pore size, the higher the shale oil displacement efficiency. The closer the cosolvent molecules are to the polarity of the shale oil, the higher the mutual solubility of CO_(2) and shale oil. The more the non-polar components of shale oil, the lower the mutual solubility of CO_(2) and shale oil with highly polar cosolvent. Ethyl acetate is more effective in stripping relatively high polar shale oil, while dimethyl ether is more effective in stripping relatively low polar shale oil. Kerogen is highly adsorptive, especially to CO_(2). The CO_(2) inside the kerogen is not easy to diffuse and leak, thus allowing for a stable carbon storage. The highest CO_(2) storage rate is observed when dimethyl ether is used as a cosolvent, and the best storage stability is observed when ethyl acetate is used as a cosolvent.展开更多
ASP-foam (ASPF) is a system prepared by injecting natural gas into the conventional alkali- surfactant-polymer (ASP) system. Foam can be formed in the porous media by the interaction of gas and surfactant in the A...ASP-foam (ASPF) is a system prepared by injecting natural gas into the conventional alkali- surfactant-polymer (ASP) system. Foam can be formed in the porous media by the interaction of gas and surfactant in the ASP system. With the ASPF system, oil recovery is improved as the interfacial tension (IFT) is reduced to a relatively low level, and the swept volume is enlarged. In this paper, four surfactants were evaluated and characterized by IFT between ASP system and oil and the foaming performance. AI- kyl benzene sulfonate (ORS-41) was chosen as the surfactant to best reduce IFT between displacement fluids and oil and improve the foaming performance. The mechanisms of ASPF flooding were studied in this paper, the results show that the ASPF flooding not only enlarges the swept volume but also enhances the displacement efficiency. The effects of reservoir heterogeneity, the gas-liquid ratio of ASPF system, and the concentrations of polymer and surfactant on the displacement efficiency were studied. A field trial of ASPF flooding has also been conducted. Both the laboratory results and the field trial results show that the ASPF flooding can significantly increase the oil recovery, with a 30% increase in the proportion of the original oil in place recovered compared with water flooding.展开更多
The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected...The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected area.Magnetic data(n=84)measured,processed and interpreted as qualitative and quantitatively.The results of total magnetic intensities indicate that the area is composed of linear magnetic lows trending NE-SW direction and circular to semi-circular causative bodies.The magnetic values ranged from-137 nT to 2345 nT with a mean of 465 nT.Reduction to equator shows significant shifting of causative bodies in the southern and northern directions.Analytical signal map shows exact boundary of granitic bodies.Cosine directional filter has brought out structural element trending NE-SW direction.Results of individual profile brought to light structurally weak zone between 90 m and 100 m in all the profile lines.Sudden decrease of magnetic values from 2042 nT to 126 nT noticed in profile line 6 between 20 m and 30 m indicates fault occurrence.Magnetic breaks obtained from these maps were visualized,interpreted and identified two suitable sites for open and bore well.Radially averaged power spectrum estimates depth of shallow and deep sources in 5 m and 50 m,respectively.Euler method has also been applied to estimate depth of granitoid and structural elements using structural indexes 0,1,2,and 3 and found depth ranges from<10 m to>90 m.Study indicates magnetic method is one of the geophysical methods suitable for groundwater exploration and site selection for open and borewells.展开更多
During the ruptures of an earthquake, the strain energy, AE, will be transferred into, at least, three parts, i.e., the seismic radiation energy (Es), fracture energy (Eg), and frictional energy (Ef), that is, A...During the ruptures of an earthquake, the strain energy, AE, will be transferred into, at least, three parts, i.e., the seismic radiation energy (Es), fracture energy (Eg), and frictional energy (Ef), that is, AE = Es + Eg + El. Friction, which is represented by a velocity- and state-de- pendent friction law by some researchers, controls the three parts. One of the main parameters of the law is the char- acteristic slip displacement, De. It is significant and nec- essary to evaluate the reliable value of Dc from observed and inverted seismic data. Since Dc controls the radiation efficiency, ηR = Es/(Es + Eg), the value of qR is a good constraint of estimating Dc. Integrating observed data and inverted results of source parameters from recorded seis- mograms, the values of Es and Eg of an earthquake can be measured, thus leading to the value of ηR. The constraint used to estimate the reliable value of Dc will be described in this work. An example of estimates of Dc based on the observed and inverted values of source parameters of the September 20, 1999 Ms 7.6 Chi-Chi (Ji-Ji), Taiwan region, earthquake will be presented.展开更多
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
基金This project is supported by the China National Key Basis Research Project (No: G1999022512)
文摘The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling software developed by RIPED (Yuan, et al. 1995). The recovery coefficient, remaining oil saturation, sweep efficiency and displacement efficiency were calculated and correlated layer by layer. The results show that the sweep efficiency and displacement efficiency work different effects on different layers in the severely heterogeneous reservoir. The study shows that the displacement efficiency and sweep efficiency play different roles in different layers for severely heterogeneous reservoirs. The displacement efficiency contributes mainly to the high permeability zones, the sweep efficiency to the low permeability zones, both of which contribute to the middle permeable zones. To improve the sweep efficiency in the low permeability zones is of significance for enhancing the whole recovery of the reservoir. It is an important path for improving the effectiveness of chemical flooding in the severely heterogeneous reservoirs to inject ternary combination slug after profile control.
基金supported by the National Science and Technology Major Project (2011ZX05024-004)National High Technology Research and Development Program of China (863 Program: 2007AA090701-3)
文摘In this paper, a series of experiments, including atomic force microscope (AFM), environmental scanning electron microscope (ESEM), and core displacement tests were conducted to investigate the effect of polymer solution structure on solution properties and oil displacement efficiency. The results show that in the HPAM solution polymer coils were formed and then aggregated into a loose structure, while the HAP2010 solution formed a strong network structure, which would significantly improve the solution viscosity and flow resistance so as to upgrade the capacity of piston-like oil displacement in highly permeable porous media. Meanwhile, the retention of the HAP2010 solution at pore throats were also enhanced, which could reduce water production during subsequent water flooding and enlarge the swept volume during polymer flooding. Therefore, enhancing the interaction among polymer molecules is an effective way to improve the displacement efficiency of polymer solutions in heavy oil reservoirs with high permeability.
基金supported by China National Key BasicResearch Development Program under grant 2006CB705805 entitled"Commercial Utilization of Greenhouse GasEnhanced Oil Recovery and Geological Storage:Study of Nonlinear Percolation Mechanisms of Multi-phase and Multi-component Mixtures of CO2 Flooding"National Key Sci-Tech Major Special Item under grant 2008ZX05009-004 entitled"The Development of Large-scale Oil and GasFields and Coal-bed Methane:New Technology on EnhancedOil Recovery in the Later Period of Oil Field Development".
文摘Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement efficiency. Reservoir pore pressure will fluctuate to some extent during a CO2 flood, causing a change in effective confining pressure. The result is rock deformation and a reduction in permeability with the reduction in fracture permeability, causing increased flow resistance in the fracture space. Simultaneously, gas cross flowing along the fractures is partially restrained. In this work, the effect of stress changes on permeability was studied through a series of flow experiments. The change in the flowrate distribution in a matrix block and contained fracture with an increase in effective pressure were analyzed. The results lead to an implicit comparison which shows that permeability of fractured core decreases sharply with an increase in effective confining pressure. The fracture flowrate ratio declines and the matrix flowrate ratio increases. Fracture flow will partially divert to the matrix block with the increase in effective confining pressure, improving gas displacement efficiency.
文摘Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability reservoir in heterogeneous reservoir. According to the core flooding experiment analyzed longitudinal heterogeneous models, single surfactant and a single polymer and polymer flooding of table binary complex drive effect. Studies show that binary combination flooding recovery effect is best, followed by polymer flooding, minimum of surfactant flooding, in heterogeneous reservoir.
文摘Displacement efficiency is an important index of water drive oilfield. This article takes water drive oilfield as the object to analyze the influence factors of displacement efficiency in limit water cut stage of water drive oilfield. The displacement efficiency experimental data of 99 cores which come from 65 development wells of 34 oilfields have been collected. The authors use the method of multiple linear regression analysis to establish a new empirical formula of displacement efficiency. The relative error of the empirical formula is less than 7% compared to the experimental data.
文摘The need to have naval units ever faster pushed the ship design to design hull shapes with increasingly higher performance thanks to the use of lightweight materials such as aluminum, and more powerful engines, etc., but without substantially modifying the traditional forms of hull. The hull patented Monotricat high hydrodynamic efficiency and energy saving it represents an evolution of the traditional architectures of the hulls, as its shape is adapted to recover wave formation engendered from the bow and sprays associated with it so as to reduce the resistance to the benefit of the speed, and navigating in displacement at speeds of planing hulls with an efficiency of about 20%. The patented hull Monotricat represents the overcoming of distinction between displacement and planing hulls, because, unlike previous solutions, the hull conventionally called Monotricat is the first displacement hull that can navigate at both displacement and planning speeds, with a resistance curve almost straight, maintaining the characteristics of a displacement hull, since it combines the characteristics of displacement and planning hull. It presents an innovative architecture that could be defined as a hybrid between a monohull and catamaran, navigating on spray self-produced. The combination of these three types of naval hulls allows it to ensure: safety, comfort navigation, best seakeeping and maneuverability in restricted waters, stability, reduction of resistance to motion, cost management, regularity on the routes even in adverse weather-sea. These characteristics of the hull have been studied, tested and validated by leading research institutes and universities with more ameliorative results in each subsequent experimentation, reported in the present work, which demonstrated a greater hydrodynamic efficiency compared to conventional hulls of 20%.
基金Supported by National Natural Science Foundation of China(52304021,52204031)Natural Science Foundation of Sichuan Province(2022NSFSC0205)National Science and Technology Major Project of China(2017ZX05049006-010).
文摘Molecular dynamics method was used to establish composite wall/inorganic nanopores of three pore sizes, three shale oil systems, five CO_(2)-cosolvent systems, and pure CO_(2) system. The process of CO_(2)-cosolvent displacement of crude oil in shale nanopores and carbon storage was simulated and the influencing factors of displacement and storage were analyzed. It is shown that the attraction of the quartz wall to shale oil increases with the degree of hydroxylation. The higher the degree of quartz hydroxylation, the more difficult it is to extract the polar components of shale oil. Nanopore size also has a great impact on shale oil displacement efficiency. The larger the pore size, the higher the shale oil displacement efficiency. The closer the cosolvent molecules are to the polarity of the shale oil, the higher the mutual solubility of CO_(2) and shale oil. The more the non-polar components of shale oil, the lower the mutual solubility of CO_(2) and shale oil with highly polar cosolvent. Ethyl acetate is more effective in stripping relatively high polar shale oil, while dimethyl ether is more effective in stripping relatively low polar shale oil. Kerogen is highly adsorptive, especially to CO_(2). The CO_(2) inside the kerogen is not easy to diffuse and leak, thus allowing for a stable carbon storage. The highest CO_(2) storage rate is observed when dimethyl ether is used as a cosolvent, and the best storage stability is observed when ethyl acetate is used as a cosolvent.
基金supported by the Daqing Oilfield Limited Company
文摘ASP-foam (ASPF) is a system prepared by injecting natural gas into the conventional alkali- surfactant-polymer (ASP) system. Foam can be formed in the porous media by the interaction of gas and surfactant in the ASP system. With the ASPF system, oil recovery is improved as the interfacial tension (IFT) is reduced to a relatively low level, and the swept volume is enlarged. In this paper, four surfactants were evaluated and characterized by IFT between ASP system and oil and the foaming performance. AI- kyl benzene sulfonate (ORS-41) was chosen as the surfactant to best reduce IFT between displacement fluids and oil and improve the foaming performance. The mechanisms of ASPF flooding were studied in this paper, the results show that the ASPF flooding not only enlarges the swept volume but also enhances the displacement efficiency. The effects of reservoir heterogeneity, the gas-liquid ratio of ASPF system, and the concentrations of polymer and surfactant on the displacement efficiency were studied. A field trial of ASPF flooding has also been conducted. Both the laboratory results and the field trial results show that the ASPF flooding can significantly increase the oil recovery, with a 30% increase in the proportion of the original oil in place recovered compared with water flooding.
基金China Geological Survey Program(DD20190128)Natural Science Foundation of Hebei Province(No.E2019330003)。
文摘The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected area.Magnetic data(n=84)measured,processed and interpreted as qualitative and quantitatively.The results of total magnetic intensities indicate that the area is composed of linear magnetic lows trending NE-SW direction and circular to semi-circular causative bodies.The magnetic values ranged from-137 nT to 2345 nT with a mean of 465 nT.Reduction to equator shows significant shifting of causative bodies in the southern and northern directions.Analytical signal map shows exact boundary of granitic bodies.Cosine directional filter has brought out structural element trending NE-SW direction.Results of individual profile brought to light structurally weak zone between 90 m and 100 m in all the profile lines.Sudden decrease of magnetic values from 2042 nT to 126 nT noticed in profile line 6 between 20 m and 30 m indicates fault occurrence.Magnetic breaks obtained from these maps were visualized,interpreted and identified two suitable sites for open and bore well.Radially averaged power spectrum estimates depth of shallow and deep sources in 5 m and 50 m,respectively.Euler method has also been applied to estimate depth of granitoid and structural elements using structural indexes 0,1,2,and 3 and found depth ranges from<10 m to>90 m.Study indicates magnetic method is one of the geophysical methods suitable for groundwater exploration and site selection for open and borewells.
基金financially supported by Academia Sinica and Ministry of Science and Technology under Grand Nos.of MOST 103-2116-M-001-010 and MOST 104-2116-M001-007
文摘During the ruptures of an earthquake, the strain energy, AE, will be transferred into, at least, three parts, i.e., the seismic radiation energy (Es), fracture energy (Eg), and frictional energy (Ef), that is, AE = Es + Eg + El. Friction, which is represented by a velocity- and state-de- pendent friction law by some researchers, controls the three parts. One of the main parameters of the law is the char- acteristic slip displacement, De. It is significant and nec- essary to evaluate the reliable value of Dc from observed and inverted seismic data. Since Dc controls the radiation efficiency, ηR = Es/(Es + Eg), the value of qR is a good constraint of estimating Dc. Integrating observed data and inverted results of source parameters from recorded seis- mograms, the values of Es and Eg of an earthquake can be measured, thus leading to the value of ηR. The constraint used to estimate the reliable value of Dc will be described in this work. An example of estimates of Dc based on the observed and inverted values of source parameters of the September 20, 1999 Ms 7.6 Chi-Chi (Ji-Ji), Taiwan region, earthquake will be presented.