Introduction:Incorporating information on animal behavior in resource-based predictive modeling(e.g.,occurrence mapping)can elucidate the relationship between process and spatial pattern and depict habitat in terms of...Introduction:Incorporating information on animal behavior in resource-based predictive modeling(e.g.,occurrence mapping)can elucidate the relationship between process and spatial pattern and depict habitat in terms of its structure as well as its function.In this paper,we assigned location data on brood-rearing greater sage-grouse(Centrocercus urophasianus)to either within-patch(encamped)or between-patch(traveling)behavioral modes by estimating a movement-based relative displacement index.Objectives were to estimate and validate spatially explicit models of within-versus between-patch resource selection for application in habitat management and compare these models to a non-behaviorally adjusted model.Results:A single model,the vegetation and water resources model,was most plausible for both the encamped and traveling modes,including the non-behaviorally adjusted model.When encamped,sage-grouse selected for taller shrubs,avoided bare ground,and were closer to mesic areas.Traveling sage-grouse selected for greater litter cover and herbaceous vegetation.Preference for proximity to mesic areas was common to both encamped and traveling modes and to the non-behaviorally adjusted model.The non-behaviorally adjusted map was similar to the encamped model and validated well.However,we observed different selection patterns during traveling that could have been masked had behavioral state not been accounted for.Conclusions:Characterizing habitat that structured between-patch movement broadens our understanding of the habitat needs of brood-rearing sage-grouse,and the combined raster surface offers a reliable habitat management tool that is readily amenable to application by GIS users in efforts to focus sustainable landscape management.展开更多
文摘Introduction:Incorporating information on animal behavior in resource-based predictive modeling(e.g.,occurrence mapping)can elucidate the relationship between process and spatial pattern and depict habitat in terms of its structure as well as its function.In this paper,we assigned location data on brood-rearing greater sage-grouse(Centrocercus urophasianus)to either within-patch(encamped)or between-patch(traveling)behavioral modes by estimating a movement-based relative displacement index.Objectives were to estimate and validate spatially explicit models of within-versus between-patch resource selection for application in habitat management and compare these models to a non-behaviorally adjusted model.Results:A single model,the vegetation and water resources model,was most plausible for both the encamped and traveling modes,including the non-behaviorally adjusted model.When encamped,sage-grouse selected for taller shrubs,avoided bare ground,and were closer to mesic areas.Traveling sage-grouse selected for greater litter cover and herbaceous vegetation.Preference for proximity to mesic areas was common to both encamped and traveling modes and to the non-behaviorally adjusted model.The non-behaviorally adjusted map was similar to the encamped model and validated well.However,we observed different selection patterns during traveling that could have been masked had behavioral state not been accounted for.Conclusions:Characterizing habitat that structured between-patch movement broadens our understanding of the habitat needs of brood-rearing sage-grouse,and the combined raster surface offers a reliable habitat management tool that is readily amenable to application by GIS users in efforts to focus sustainable landscape management.