The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,mos...The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,most tide models incorporate the distribution of vertical displacement loading tides;however,their accuracy has not been assessed for the equatorial and Indian Ocean regions.Global Positioning System(GPS)observations provide high-precision data on sea-level changes,enabling the assessment of the accuracy and reliability of vertical displacement tide models.However,because the tidal period of the K_(2) constituent is almost identical to the orbital period of GPS constellations,the estimation of the K_(2) tidal constituent from GPS observations is not satisfactory.In this study,the principle of smoothness is employed to correct the systematic error in K_(2) estimates in GPS observations through quadratic fitting.Using the adjusted harmonic constants from 31 GPS stations for the equatorial and Indian Ocean,the accuracy of eight major constituents from five global vertical displacement tide models(FES2014,EOT11a,GOT4.10c,GOT4.8,and NAO.99b)is evaluated for the equatorial and Indian Ocean.The results indicate that the EOT11a and FES2014 models exhibit higher accuracy in the vertical displacement tide models for the equatorial and Indian Ocean,with root sum squares errors of 2.29 mm and 2.34 mm,res-pectively.Furthermore,a brief analysis of the vertical displacement tide distribution characteristics of the eight major constituents for the equatorial and Indian Ocean was conducted using the EOT11a model.展开更多
There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in dire...There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in direct integration methods for these models are analyzed to examine the suitability of DIM. Numerical results are presented and show that the time-step for DIM is about the same as for AIM, and achieves the same accuracy. This is contrary to previous research that reported that there are several sources of numerical errors associated with the direct application of earthquake displacement loading, and a very small time step is required to define the displacement record and to integrate the dynamic equilibrium equation. It is shown in this paper that DIM is as accurate and suitable as, if not more than, AIM for analyzing the response of a structure to uniformly distributed and spatially varying ground motions.展开更多
In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring meth...In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on.展开更多
For the cyclic process of mass transfer in tray columns there are considered the hydrodynamic models of liquid flow during steam supply and during overflow of liquid from tray to tray. During steam supply, the hydrody...For the cyclic process of mass transfer in tray columns there are considered the hydrodynamic models of liquid flow during steam supply and during overflow of liquid from tray to tray. During steam supply, the hydrodynamic model is determined as perfect displacement model, and during liquid overflow, it is described as cell model. There were received the characteristics of liquid flow as follows: average residence time of liquid, degree of dispersion around the mean on the tray, number of perfect mixing cells depending on multiplication factor of exchange of liquid delay. In Y-X coordinates there is depicted a work line and theoretical stage of perfect displacement model. There were considered the conditions of mutual transfer of theoretical stage and theoretical stage with perfect displacement. The advantages of the mass transfer cyclic process to the stationary one arc stated.展开更多
The hazard assessment of potential earthquake-induced landslides is an important aspect of the study of earthquake-induced landslides. In this study, we assessed the hazard of potential earthquake-induced landslides i...The hazard assessment of potential earthquake-induced landslides is an important aspect of the study of earthquake-induced landslides. In this study, we assessed the hazard of potential earthquake-induced landslides in Huaxian County with a new hazard assessment method. This method is based on probabilistic seismic hazard analysis and the Newmark cumulative displacement assessment model. The model considers a comprehensive suite of information, including the seismic activities and engineering geological conditions in the study area, and simulates the uncertainty of the intensity parameters of the engineering geological rock groups using the Monte Carlo method. Unlike previous assessment studies on ground motions with a given exceedance probability level, the hazard of earthquake-induced landslides obtained by the method presented in this study allows for the possibility of earthquake-induced landslides in different parts of the study area in the future. The assessment of the hazard of earthquake-induced landslides in this study showed good agreement with the historical distribution of earthquake-induced landslides. This indicates that the assessment properly reflects the macroscopic rules for the development of earthquake-induced landslides in the study area, and can provide a reference framework for the management of the risk of earthquakeinduced landslides and land planning.展开更多
The separation efficiency of biopolymers with a short column in liquid chromatography has been investigated in this paper. It was found that the column length has slight effect on the resolution of biopolymers under g...The separation efficiency of biopolymers with a short column in liquid chromatography has been investigated in this paper. It was found that the column length has slight effect on the resolution of biopolymers under gradient elution. The reasons have been explained by stoichiometric displacement model for retention of solute. The column 1.0 cm long was also used in the separation and purification of recombinant human granulocyte colony-simulating factor (rhG-CSF). It only took 40 min and the purity by one step was found to be almost 100%.展开更多
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
Probabilistic analysis in the field of seismic landslide hazard assessment is often based on an estimate of uncertainties of geological, geotechnical,geomorphological and seismological parameters.However, real situati...Probabilistic analysis in the field of seismic landslide hazard assessment is often based on an estimate of uncertainties of geological, geotechnical,geomorphological and seismological parameters.However, real situations are very complex and thus uncertainties of some parameters such as water content conditions and critical displacement are difficult to describe with accurate mathematical models. In this study, we present a probabilistic methodology based on the probabilistic seismic hazard analysis method and the Newmark’s displacement model. The Tianshui seismic zone(105°00′-106°00′ E, 34°20′-34°40′ N) in the northeastern Tibetan Plateau were used as an example. Arias intensity with three standard probabilities of exceedance(63%, 10%, and 2% in 50 years) in accordance with building design provisions were used to compute Newmark displacements by incorporating the effects of topographic amplification.Probable scenarios of water content condition were considered and three water content conditions(dry,wet and saturated) were adopted to simulate the effect of pore-water on slope. The influence of 5 cm and 10 cm critical displacements were investigated in order to analyze the sensitivity of critical displacement to the probabilities of earthquake-induced landslide occurrence. The results show that water content in particular, have a great influence on the distribution of high seismic landslide hazard areas. Generally, the dry coverage analysis represents a lower bound for susceptibility and hazard assessment, and the saturated coverage analysis represents an upper bound to some extent. Moreover, high seismic landslide hazard areas are also influenced by the critical displacements. The slope failure probabilities during future earthquakes with critical displacements of 5 cm can increase by a factor of 1.2 to 2.3 as compared to that of 10 cm. It suggests that more efforts are required in order to obtain reasonable threshold values for slope failure. Considering the probable scenarios of water content condition which is varied with seasons, seismic landslide hazard assessments are carried out for frequent, occasional and rare earthquake occurrences in the Tianshui region, which can provide a valuable reference for landslide hazard management and infrastructure design in mountainous seismic zones.展开更多
The effect of passive plates on vertical displacement control in the EAST tokamak is investigated by open loop experiments and numerical simulations based on a rigid displacement model. The experiments and simulations...The effect of passive plates on vertical displacement control in the EAST tokamak is investigated by open loop experiments and numerical simulations based on a rigid displacement model. The experiments and simulations indicate that the vertical instability growth rate is reduced by a factor of about 2 in the presence of the passive plates, where the adjacent segments are not connected to each other. The simulations also show that the vertical instability growth rate is reduced by a factor of about 10 if all adjacent segments on each passive plate loop are connected to each other. The operational window is greatly enlarged with the passive plates.展开更多
In recent years, silica nanoparticle aggregates (SNPAs) have been used to decrease the injection pressure of wells in low permeability reservoirs achieving good results. In order to study the mechanisms for reductio...In recent years, silica nanoparticle aggregates (SNPAs) have been used to decrease the injection pressure of wells in low permeability reservoirs achieving good results. In order to study the mechanisms for reduction in the injection pressure of low permeability wells by the SNPA-diesel oil system injection, the microstructure of SNPAs was observed with a transmission electron microscope (TEM). The particle size distribution of SNPAs was also measured by the laser scattering method. The viscosities of diesel oil and SNPA-diesel oil system were measured with a capillary viscometer. The effect of SNPAs on the solubility of wax in the diesel oil was experimentally studied. The influencing factors, including temperature and SNPA concentration in diesel oil, on wax solubility were analyzed. A pore-throat film displacement model (PTFDM) was built for mechanism explanation. The microstructure and size distribution analyses show that the SNPAs are in the nanometer size range. The viscosity of the SNPA-diesel oil system is lower than that of the diesel oil. The solubility of wax in the diesel oil increases greatly due to SNPA addition, the solubility ratio reaches 7.5. The solubility of wax in diesel oil increases with increases in the concentration of SNPAs in the diesel oil and with the temperature. It is proved that the addition of SNPAs to diesel oil helps remove the wax deposited near the wellbore. This maybe one of the main mechanisms for injection pressure decreases in low permeability reservoirs.展开更多
The behavior of cold⁃formed steel(CFS)stud⁃to⁃sheathing connections at elevated temperatures is an important parameter for the fire resistance design and modeling of mid⁃rise CFS structures.In this paper,three kinds o...The behavior of cold⁃formed steel(CFS)stud⁃to⁃sheathing connections at elevated temperatures is an important parameter for the fire resistance design and modeling of mid⁃rise CFS structures.In this paper,three kinds of sheathings,namely,medium⁃and low⁃density calcium⁃silicate boards and oriented strand board,were selected for double⁃shear experiments on the mechanical properties of 253 screw connections at ambient and elevated temperatures.The effects of the shear direction,screw edge distance and the number of screws on the behavior of the connections were studied.The results showed that the shear direction and the screw edge distance more significantly influenced the peak deformation,while their impacts on the peak load varied with the type of sheathings.Compared with the single⁃screw connections,the peak loads of the specimens with double⁃screw connections obviously increased but did not double.Finally,a simplified load⁃displacement curve model of stud⁃to⁃sheathing connections at elevated temperature was generated first by establishing the prediction formula for characteristic parameters,such as the peak load,the peak deformation and the elastic stiffness,and then by considering whether the curves corresponded to stiffness increase phenomena.The present investigation provides basic data for future studies on the numerical modeling of CFS structures under fire conditions.展开更多
In this study, we present a new method to compute internal co-seismic deformations of a homoge- neous sphere, based on our previous approach (Dong et al. 2016). In practical numerical computations, we consider a str...In this study, we present a new method to compute internal co-seismic deformations of a homoge- neous sphere, based on our previous approach (Dong et al. 2016). In practical numerical computations, we consider a strike-slip point source as an example, and compute the vertical co-seismic displacement on different internal spherical surfaces (including the Earth surface). Numerical results show that the internal co-seismic deformations are generally larger than that on the Earth surface; especially, the maximum co-seismic displacement appears around the seismic source. The co-seismic displacements are opposite in sign for the areas over and beneath the position of the seismic source. The results also indicate that the curvature effect of the internal deformation is pretty large, and larger than that on the Earth surface. The results indicate that the dislocation theory for a sphere is necessary in computing internal co-seismic deformations.展开更多
In this paper,we present an approach to generating probabilistic hazard maps for earthquake-induced landslides using the Newmark Displacement Model(NDM).This model takes the uncertainties associated with the slope pro...In this paper,we present an approach to generating probabilistic hazard maps for earthquake-induced landslides using the Newmark Displacement Model(NDM).This model takes the uncertainties associated with the slope properties(e.g.,soil shear strengths,groundwater table location)into consideration,which is coupled with the hydrological model based on geomorphological,geological,geotechnical,seismological,and rainfall data.Uncertainties and fluctuations in the input parameters of the NDM are considered by treating these quantities asβ-PERT distributions through Monte Carlo techniques,which allows probability value of the NDM to be cast into hazard maps.Additionally,incorporating Monte Carlo techniques can avoid using conservative input parameters in a deterministic approach to capture these uncertainties.Taking the 2017 Jiuzhaigou M_(w)6.5 Earthquake in Sichuan Province,Western China as an example,earthquake-induced landslides probability distribution map is generated with the most appropriate displacement threshold(λ=1 cm).Our results show good performances for realistic landslide hazard assessment,which can serve as a basis for providing a reference for the prediction of earthquake-induced landslide probability and rapid landslide hazard assessment after a strong earthquake.展开更多
Numerous practical geodetic and geophysical applications necessitate precise measurements of GNSS displacements at the millimeter or sub-millimeter level. To attain such precision, it is imperative to identify and ana...Numerous practical geodetic and geophysical applications necessitate precise measurements of GNSS displacements at the millimeter or sub-millimeter level. To attain such precision, it is imperative to identify and analyze the unidentified decadal signals inherent in the GPS displacements. In this research, we employ the optimal sequence estimation method to effectively detect an about 13.6-year oscillational signal with an excited amplitude of 3.6±1.2 mm in the U-components of the GPS displacements. It is noteworthy that this signal demonstrates a consistent spatial pattern characterized by the spherical harmonic Y_(2,-2). We conduct a comparative analysis with the 13.6-year oscillation observed in length-of-day variations(and geomagnetic records), finding that they are in reverse phase. After eliminating the Earth's external excitation sources through the utilization of two distinct in-situ hydrological records, we suggest that the 13.6-year GPS signal may come from the internal motions within the Earth. However, the specific excitation source and the detailed physical mechanism remain uncertain. Additionally, we develop a mathematical displacement model to explain the 13.6-year signal. Our findings indicate that this signal can result in displacements of up to 1.37 mm and velocity effects of 0.63 mm/yr(for U-component) at maximum. These results underscore the necessity of incorporating this 13.6-year signal into the construction and maintenance of a dynamic reference frame at the millimeter level.展开更多
基金The Shandong Provincial Natural Science Foundation under contract No.ZR2023QD045the National Natural Science Foundation of China under contract Nos 42406026,42076024 and 42106032supported by the Taishan Scholar Program under contract No.tstp20221148。
文摘The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,most tide models incorporate the distribution of vertical displacement loading tides;however,their accuracy has not been assessed for the equatorial and Indian Ocean regions.Global Positioning System(GPS)observations provide high-precision data on sea-level changes,enabling the assessment of the accuracy and reliability of vertical displacement tide models.However,because the tidal period of the K_(2) constituent is almost identical to the orbital period of GPS constellations,the estimation of the K_(2) tidal constituent from GPS observations is not satisfactory.In this study,the principle of smoothness is employed to correct the systematic error in K_(2) estimates in GPS observations through quadratic fitting.Using the adjusted harmonic constants from 31 GPS stations for the equatorial and Indian Ocean,the accuracy of eight major constituents from five global vertical displacement tide models(FES2014,EOT11a,GOT4.10c,GOT4.8,and NAO.99b)is evaluated for the equatorial and Indian Ocean.The results indicate that the EOT11a and FES2014 models exhibit higher accuracy in the vertical displacement tide models for the equatorial and Indian Ocean,with root sum squares errors of 2.29 mm and 2.34 mm,res-pectively.Furthermore,a brief analysis of the vertical displacement tide distribution characteristics of the eight major constituents for the equatorial and Indian Ocean was conducted using the EOT11a model.
文摘There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in direct integration methods for these models are analyzed to examine the suitability of DIM. Numerical results are presented and show that the time-step for DIM is about the same as for AIM, and achieves the same accuracy. This is contrary to previous research that reported that there are several sources of numerical errors associated with the direct application of earthquake displacement loading, and a very small time step is required to define the displacement record and to integrate the dynamic equilibrium equation. It is shown in this paper that DIM is as accurate and suitable as, if not more than, AIM for analyzing the response of a structure to uniformly distributed and spatially varying ground motions.
基金provided by the Program for New Century Excellent Talents in University (No. NCET-06-0477)the Independent Research Project of the State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No. SKLCRSM09X01)the Fundamental Research Funds for the Central Universities
文摘In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on.
文摘For the cyclic process of mass transfer in tray columns there are considered the hydrodynamic models of liquid flow during steam supply and during overflow of liquid from tray to tray. During steam supply, the hydrodynamic model is determined as perfect displacement model, and during liquid overflow, it is described as cell model. There were received the characteristics of liquid flow as follows: average residence time of liquid, degree of dispersion around the mean on the tray, number of perfect mixing cells depending on multiplication factor of exchange of liquid delay. In Y-X coordinates there is depicted a work line and theoretical stage of perfect displacement model. There were considered the conditions of mutual transfer of theoretical stage and theoretical stage with perfect displacement. The advantages of the mass transfer cyclic process to the stationary one arc stated.
基金funded by the National Natural Science Foundation of China(41572313)Geological Survey Project(12120114035501)the China National Special Fund for Earthquake Scientific Research(201408014)
文摘The hazard assessment of potential earthquake-induced landslides is an important aspect of the study of earthquake-induced landslides. In this study, we assessed the hazard of potential earthquake-induced landslides in Huaxian County with a new hazard assessment method. This method is based on probabilistic seismic hazard analysis and the Newmark cumulative displacement assessment model. The model considers a comprehensive suite of information, including the seismic activities and engineering geological conditions in the study area, and simulates the uncertainty of the intensity parameters of the engineering geological rock groups using the Monte Carlo method. Unlike previous assessment studies on ground motions with a given exceedance probability level, the hazard of earthquake-induced landslides obtained by the method presented in this study allows for the possibility of earthquake-induced landslides in different parts of the study area in the future. The assessment of the hazard of earthquake-induced landslides in this study showed good agreement with the historical distribution of earthquake-induced landslides. This indicates that the assessment properly reflects the macroscopic rules for the development of earthquake-induced landslides in the study area, and can provide a reference framework for the management of the risk of earthquakeinduced landslides and land planning.
文摘The separation efficiency of biopolymers with a short column in liquid chromatography has been investigated in this paper. It was found that the column length has slight effect on the resolution of biopolymers under gradient elution. The reasons have been explained by stoichiometric displacement model for retention of solute. The column 1.0 cm long was also used in the separation and purification of recombinant human granulocyte colony-simulating factor (rhG-CSF). It only took 40 min and the purity by one step was found to be almost 100%.
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
基金funded by the National Key R&D Program (Grants No. 2018YFC1504601)National Natural Science Foundation of China (Grants No. 41572313 and 41702343)China Geological Survey Project (Grant No. DD20190717)
文摘Probabilistic analysis in the field of seismic landslide hazard assessment is often based on an estimate of uncertainties of geological, geotechnical,geomorphological and seismological parameters.However, real situations are very complex and thus uncertainties of some parameters such as water content conditions and critical displacement are difficult to describe with accurate mathematical models. In this study, we present a probabilistic methodology based on the probabilistic seismic hazard analysis method and the Newmark’s displacement model. The Tianshui seismic zone(105°00′-106°00′ E, 34°20′-34°40′ N) in the northeastern Tibetan Plateau were used as an example. Arias intensity with three standard probabilities of exceedance(63%, 10%, and 2% in 50 years) in accordance with building design provisions were used to compute Newmark displacements by incorporating the effects of topographic amplification.Probable scenarios of water content condition were considered and three water content conditions(dry,wet and saturated) were adopted to simulate the effect of pore-water on slope. The influence of 5 cm and 10 cm critical displacements were investigated in order to analyze the sensitivity of critical displacement to the probabilities of earthquake-induced landslide occurrence. The results show that water content in particular, have a great influence on the distribution of high seismic landslide hazard areas. Generally, the dry coverage analysis represents a lower bound for susceptibility and hazard assessment, and the saturated coverage analysis represents an upper bound to some extent. Moreover, high seismic landslide hazard areas are also influenced by the critical displacements. The slope failure probabilities during future earthquakes with critical displacements of 5 cm can increase by a factor of 1.2 to 2.3 as compared to that of 10 cm. It suggests that more efforts are required in order to obtain reasonable threshold values for slope failure. Considering the probable scenarios of water content condition which is varied with seasons, seismic landslide hazard assessments are carried out for frequent, occasional and rare earthquake occurrences in the Tianshui region, which can provide a valuable reference for landslide hazard management and infrastructure design in mountainous seismic zones.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10725523,10721505,and 10835009)
文摘The effect of passive plates on vertical displacement control in the EAST tokamak is investigated by open loop experiments and numerical simulations based on a rigid displacement model. The experiments and simulations indicate that the vertical instability growth rate is reduced by a factor of about 2 in the presence of the passive plates, where the adjacent segments are not connected to each other. The simulations also show that the vertical instability growth rate is reduced by a factor of about 10 if all adjacent segments on each passive plate loop are connected to each other. The operational window is greatly enlarged with the passive plates.
基金support from the National High-Technology Research and Development Program of China(No.2004AA616160)
文摘In recent years, silica nanoparticle aggregates (SNPAs) have been used to decrease the injection pressure of wells in low permeability reservoirs achieving good results. In order to study the mechanisms for reduction in the injection pressure of low permeability wells by the SNPA-diesel oil system injection, the microstructure of SNPAs was observed with a transmission electron microscope (TEM). The particle size distribution of SNPAs was also measured by the laser scattering method. The viscosities of diesel oil and SNPA-diesel oil system were measured with a capillary viscometer. The effect of SNPAs on the solubility of wax in the diesel oil was experimentally studied. The influencing factors, including temperature and SNPA concentration in diesel oil, on wax solubility were analyzed. A pore-throat film displacement model (PTFDM) was built for mechanism explanation. The microstructure and size distribution analyses show that the SNPAs are in the nanometer size range. The viscosity of the SNPA-diesel oil system is lower than that of the diesel oil. The solubility of wax in the diesel oil increases greatly due to SNPA addition, the solubility ratio reaches 7.5. The solubility of wax in diesel oil increases with increases in the concentration of SNPAs in the diesel oil and with the temperature. It is proved that the addition of SNPAs to diesel oil helps remove the wax deposited near the wellbore. This maybe one of the main mechanisms for injection pressure decreases in low permeability reservoirs.
基金the National Natural Science Foundation of China(Grant No.51978655)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201347)+1 种基金the Xuzhou Science and Technology Project(Grant No.KC20175)the China Postdoctoral Science Foundation Funded Project(Grant No.2019M652007).
文摘The behavior of cold⁃formed steel(CFS)stud⁃to⁃sheathing connections at elevated temperatures is an important parameter for the fire resistance design and modeling of mid⁃rise CFS structures.In this paper,three kinds of sheathings,namely,medium⁃and low⁃density calcium⁃silicate boards and oriented strand board,were selected for double⁃shear experiments on the mechanical properties of 253 screw connections at ambient and elevated temperatures.The effects of the shear direction,screw edge distance and the number of screws on the behavior of the connections were studied.The results showed that the shear direction and the screw edge distance more significantly influenced the peak deformation,while their impacts on the peak load varied with the type of sheathings.Compared with the single⁃screw connections,the peak loads of the specimens with double⁃screw connections obviously increased but did not double.Finally,a simplified load⁃displacement curve model of stud⁃to⁃sheathing connections at elevated temperature was generated first by establishing the prediction formula for characteristic parameters,such as the peak load,the peak deformation and the elastic stiffness,and then by considering whether the curves corresponded to stiffness increase phenomena.The present investigation provides basic data for future studies on the numerical modeling of CFS structures under fire conditions.
基金supported financially by the National Natural Science Foundation of China (Nos.41331066,41604067 and 41474059)China Postdoctoral Science Foundation Funded Project (No.119103S268)+1 种基金CAS Key Study Program QYZDY-SSW-SYS003the CAS/CAFEA International Partnership Program for Creative Research Teams (No.KZZD-EW-TZ-19)
文摘In this study, we present a new method to compute internal co-seismic deformations of a homoge- neous sphere, based on our previous approach (Dong et al. 2016). In practical numerical computations, we consider a strike-slip point source as an example, and compute the vertical co-seismic displacement on different internal spherical surfaces (including the Earth surface). Numerical results show that the internal co-seismic deformations are generally larger than that on the Earth surface; especially, the maximum co-seismic displacement appears around the seismic source. The co-seismic displacements are opposite in sign for the areas over and beneath the position of the seismic source. The results also indicate that the curvature effect of the internal deformation is pretty large, and larger than that on the Earth surface. The results indicate that the dislocation theory for a sphere is necessary in computing internal co-seismic deformations.
文摘In this paper,we present an approach to generating probabilistic hazard maps for earthquake-induced landslides using the Newmark Displacement Model(NDM).This model takes the uncertainties associated with the slope properties(e.g.,soil shear strengths,groundwater table location)into consideration,which is coupled with the hydrological model based on geomorphological,geological,geotechnical,seismological,and rainfall data.Uncertainties and fluctuations in the input parameters of the NDM are considered by treating these quantities asβ-PERT distributions through Monte Carlo techniques,which allows probability value of the NDM to be cast into hazard maps.Additionally,incorporating Monte Carlo techniques can avoid using conservative input parameters in a deterministic approach to capture these uncertainties.Taking the 2017 Jiuzhaigou M_(w)6.5 Earthquake in Sichuan Province,Western China as an example,earthquake-induced landslides probability distribution map is generated with the most appropriate displacement threshold(λ=1 cm).Our results show good performances for realistic landslide hazard assessment,which can serve as a basis for providing a reference for the prediction of earthquake-induced landslide probability and rapid landslide hazard assessment after a strong earthquake.
基金supported by the National Natural Science Foundation of China (Grant Nos.42388102,42192533,and 42192531)the Fundamental Research Funds for the Central Universities (Grant No.2042023kfyq01)the Special Fund of Hubei Luojia Laboratory (Grant No.220100002)。
文摘Numerous practical geodetic and geophysical applications necessitate precise measurements of GNSS displacements at the millimeter or sub-millimeter level. To attain such precision, it is imperative to identify and analyze the unidentified decadal signals inherent in the GPS displacements. In this research, we employ the optimal sequence estimation method to effectively detect an about 13.6-year oscillational signal with an excited amplitude of 3.6±1.2 mm in the U-components of the GPS displacements. It is noteworthy that this signal demonstrates a consistent spatial pattern characterized by the spherical harmonic Y_(2,-2). We conduct a comparative analysis with the 13.6-year oscillation observed in length-of-day variations(and geomagnetic records), finding that they are in reverse phase. After eliminating the Earth's external excitation sources through the utilization of two distinct in-situ hydrological records, we suggest that the 13.6-year GPS signal may come from the internal motions within the Earth. However, the specific excitation source and the detailed physical mechanism remain uncertain. Additionally, we develop a mathematical displacement model to explain the 13.6-year signal. Our findings indicate that this signal can result in displacements of up to 1.37 mm and velocity effects of 0.63 mm/yr(for U-component) at maximum. These results underscore the necessity of incorporating this 13.6-year signal into the construction and maintenance of a dynamic reference frame at the millimeter level.