Urban subway tunnel construction inevitably disturbs the surrounding rock and causes the deformation of existing subway structures. Dynamic predictions of the tunnel horizontal displacement, tunnel ballast settlement,...Urban subway tunnel construction inevitably disturbs the surrounding rock and causes the deformation of existing subway structures. Dynamic predictions of the tunnel horizontal displacement, tunnel ballast settlement, and tunnel differential settlement are important for ensuring the safety of buildings and tunnels. First, based on the Hangzhou Metro project, we analyzed the influence of construction on the deformation of existing subway structures and the difficulties and key points in monitoring. Then, a deformation prediction model, based on a back propagation(BP) neural network, was established with massive monitoring data. In particular, we analyzed the influence of four structures of the BP neural network on prediction performance, i.e., single input–single hidden layer–single output, multiple inputs–single hidden layer–single output, single input–double hidden layers–single output, and multiple inputs–double hidden layers–single output, and verified them using measured data.展开更多
基金supported by the Humanities and Social Sciences Research Project of Ministry of Education of China(No.23YJCZH037)the Educational Science Planning Project of Zhejiang Province(No.2023SCG222)+3 种基金the Foundation of the State Key Laboratory of Mountain Bridge and Tunnel Engineering(No.SKLBT-2210)the Scientific Research Project of Zhejiang Provincial Department of Education(No.Y202248682)the National Key R&D Program of China(No.2022YFC3802301)the National Natural Science Foundation of China(Nos.52178306 and 52008373).
文摘Urban subway tunnel construction inevitably disturbs the surrounding rock and causes the deformation of existing subway structures. Dynamic predictions of the tunnel horizontal displacement, tunnel ballast settlement, and tunnel differential settlement are important for ensuring the safety of buildings and tunnels. First, based on the Hangzhou Metro project, we analyzed the influence of construction on the deformation of existing subway structures and the difficulties and key points in monitoring. Then, a deformation prediction model, based on a back propagation(BP) neural network, was established with massive monitoring data. In particular, we analyzed the influence of four structures of the BP neural network on prediction performance, i.e., single input–single hidden layer–single output, multiple inputs–single hidden layer–single output, single input–double hidden layers–single output, and multiple inputs–double hidden layers–single output, and verified them using measured data.