In this paper the method of reciprocal theorem is extended to find solutions of three-D problems of elasticity.First we give the basic solution of the cube with six surfaces fixed as the basic system and then using th...In this paper the method of reciprocal theorem is extended to find solutions of three-D problems of elasticity.First we give the basic solution of the cube with six surfaces fixed as the basic system and then using the reciprocal theorem between the basic system acted on by unit concentrated loads and the actual system with prescribed surface displacements, we find displacement solution of the actual system.展开更多
In this paper, the author obtains the more general displacement solutions for the isotropic plane elasticity problems. The general solution obtained in ref. [ 1 ] is merely the particular case of this paper, In compar...In this paper, the author obtains the more general displacement solutions for the isotropic plane elasticity problems. The general solution obtained in ref. [ 1 ] is merely the particular case of this paper, In comparison with ref. [1], the general solutions of this paper contain more arbitrary constants. Thus they may satisfy more boundary conditions.展开更多
The problem of cavity stability widely exists in deep underground engineering and energy exploitation.First,the stress field of the surrounding rock under the uniform stress field is deduced based on a post-peak stren...The problem of cavity stability widely exists in deep underground engineering and energy exploitation.First,the stress field of the surrounding rock under the uniform stress field is deduced based on a post-peak strength drop model considering the rock’s characteristics of constant modulus and double moduli.Then,the orthogonal non-associative flow rule is used to establish the displacement of the surrounding rock under constant modulus and double moduli,respectively,considering the stiffness degradation and dilatancy effects in the plastic region and assuming that the elastic strain in the plastic region satisfies the elastic constitutive relationship.Finally,the evolution of the displacement in the surrounding rock is analyzed under the effects of the double modulus characteristics,the strength drop,the stiffness degradation,and the dilatancy.The results show that the displacement solutions of the surrounding rock under constant modulus and double moduli have a unified expression.The coefficients of the expression are related to the stress field of the original rock,the elastic constant of the surrounding rock,the strength parameters,and the dilatancy angle.The strength drop,the stiffness degradation,and the dilatancy effects all have effects on the displacement.The effects can be characterized by quantitative relationships.展开更多
文摘In this paper the method of reciprocal theorem is extended to find solutions of three-D problems of elasticity.First we give the basic solution of the cube with six surfaces fixed as the basic system and then using the reciprocal theorem between the basic system acted on by unit concentrated loads and the actual system with prescribed surface displacements, we find displacement solution of the actual system.
文摘In this paper, the author obtains the more general displacement solutions for the isotropic plane elasticity problems. The general solution obtained in ref. [ 1 ] is merely the particular case of this paper, In comparison with ref. [1], the general solutions of this paper contain more arbitrary constants. Thus they may satisfy more boundary conditions.
基金Project supported by the National Natural Science Foundation of China and Shandong Province Joint Program(No.U1806209)the National Natural Science Foundation of China(Nos.51774196 and 51774194)and Shandong University of Science and Technology(SDUST)Research Fund(No.2019TDJH101)。
文摘The problem of cavity stability widely exists in deep underground engineering and energy exploitation.First,the stress field of the surrounding rock under the uniform stress field is deduced based on a post-peak strength drop model considering the rock’s characteristics of constant modulus and double moduli.Then,the orthogonal non-associative flow rule is used to establish the displacement of the surrounding rock under constant modulus and double moduli,respectively,considering the stiffness degradation and dilatancy effects in the plastic region and assuming that the elastic strain in the plastic region satisfies the elastic constitutive relationship.Finally,the evolution of the displacement in the surrounding rock is analyzed under the effects of the double modulus characteristics,the strength drop,the stiffness degradation,and the dilatancy.The results show that the displacement solutions of the surrounding rock under constant modulus and double moduli have a unified expression.The coefficients of the expression are related to the stress field of the original rock,the elastic constant of the surrounding rock,the strength parameters,and the dilatancy angle.The strength drop,the stiffness degradation,and the dilatancy effects all have effects on the displacement.The effects can be characterized by quantitative relationships.