Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement trans...Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement transformation coefficient(DTC)of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process,and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view(FFOV).To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands,a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV.First,an image coordinate system,a pixel measurement coordinate system,and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM.In addition,marker spots in the FFOV are selected,and the DTCs at the marker spots are obtained from calibration experiments.Also,a fitting method based on locally weighted scatterplot smoothing(LOWESS)is selected,and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots.Finally,the calibrated distribution functions of the DTCs are applied to the LVDMM,and experiments conducted to verify the displacement measurement accuracies are reported.The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than±15μm and±19μm,respectively,and that for oblique displacement is better than±24μm.Compared with the traditional calibration method,the displacement measurement error in the FFOV is now 90%smaller.This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV,and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.展开更多
Microstructure of metastable austenitic manganese steel after reverse transformation treatment was investi gated using optical microscopy, X ray diffraction (XRD), electrical resistivity and hardness testing. Austen...Microstructure of metastable austenitic manganese steel after reverse transformation treatment was investi gated using optical microscopy, X ray diffraction (XRD), electrical resistivity and hardness testing. Austenite grain refinement was successfully achieved by a two-step heat treatment. First, martensite was produced by cooling the so- lution-treated samples to --196 ℃. Then, the deep cryogenic treated samples were heated to 850 ℃ upon slow or rapid heating. The mean size of original austenite grain was about 400 fire. But the mean size of equiaxed reversion austenite was refined to 50 μm. Microstructure evolution and electrical resistivity change showed that martensite plates underwent tempering action upon slow heating, and the residual austenite was decomposed, resulting in the formation of pearlite nodules at the austenite grains boundaries. The refinement mechanism upon slow heating is the diffusion-controlled nucleation and growth of austenite. However, the reverse transformation upon rapid heating was predominated by displacive manner. The residual austenite was not decomposed. The plate α-phase was carbon-super- saturated until the starting of reverse transformation. The reverse transformation was accompanied by surface effect, resulting in the formation of plate austenite with high density dislocations. The refinement mechanism upon rapid heating is the recrystallization of displacive reversed austenite.展开更多
基金supported financially by the National Natural Science Foundation of China (NSFC) (Grant No.51775378)the Key Projects in Tianjin Science&Technology Support Program (Grant No.19YFZC GX00890).
文摘Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement transformation coefficient(DTC)of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process,and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view(FFOV).To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands,a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV.First,an image coordinate system,a pixel measurement coordinate system,and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM.In addition,marker spots in the FFOV are selected,and the DTCs at the marker spots are obtained from calibration experiments.Also,a fitting method based on locally weighted scatterplot smoothing(LOWESS)is selected,and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots.Finally,the calibrated distribution functions of the DTCs are applied to the LVDMM,and experiments conducted to verify the displacement measurement accuracies are reported.The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than±15μm and±19μm,respectively,and that for oblique displacement is better than±24μm.Compared with the traditional calibration method,the displacement measurement error in the FFOV is now 90%smaller.This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV,and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.
基金Sponsored by National Natural Science Foundation of China(51071075)
文摘Microstructure of metastable austenitic manganese steel after reverse transformation treatment was investi gated using optical microscopy, X ray diffraction (XRD), electrical resistivity and hardness testing. Austenite grain refinement was successfully achieved by a two-step heat treatment. First, martensite was produced by cooling the so- lution-treated samples to --196 ℃. Then, the deep cryogenic treated samples were heated to 850 ℃ upon slow or rapid heating. The mean size of original austenite grain was about 400 fire. But the mean size of equiaxed reversion austenite was refined to 50 μm. Microstructure evolution and electrical resistivity change showed that martensite plates underwent tempering action upon slow heating, and the residual austenite was decomposed, resulting in the formation of pearlite nodules at the austenite grains boundaries. The refinement mechanism upon slow heating is the diffusion-controlled nucleation and growth of austenite. However, the reverse transformation upon rapid heating was predominated by displacive manner. The residual austenite was not decomposed. The plate α-phase was carbon-super- saturated until the starting of reverse transformation. The reverse transformation was accompanied by surface effect, resulting in the formation of plate austenite with high density dislocations. The refinement mechanism upon rapid heating is the recrystallization of displacive reversed austenite.