The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran...The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.展开更多
Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known bef...Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion.展开更多
Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties effici...Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties efficiently and reliably,this study developed an uncertainty inversion analysis method for rockfill material parameters using the stacking ensemble strategy and Jaya optimizer.The comprehensive implementation process of the proposed model was described with an illustrative CFRD example.First,the surrogate model method using the stacking ensemble algorithm was used to conduct the Monte Carlo stochastic finite element calculations with reduced computational cost and improved accuracy.Afterwards,the Jaya algorithm was used to inversely calculate the combination of the coefficient of variation of rockfill material parameters.This optimizer obtained higher accuracy and more significant uncertainty reduction than traditional optimizers.Overall,the developed model effectively identified the random parameters of rockfill materials.This study provided scientific references for uncertainty analysis of CFRDs.In addition,the proposed method can be applied to other similar engineering structures.展开更多
A genetic algorithm-based joint inversion method is presented for evaluating hydrocarbon-bearing geological formations. Conventional inversion procedures routinely used in the oil industry perform the inversion proces...A genetic algorithm-based joint inversion method is presented for evaluating hydrocarbon-bearing geological formations. Conventional inversion procedures routinely used in the oil industry perform the inversion processing of borehole geophysical data locally. As having barely more types of data than unknowns in a depth, a set of marginally over-determined inverse problems has to be solved along a borehole, which is a rather noise sensitive procedure. For the reduction of noise effect, the amount of overdetermination must be increased. To fulfill this requirement, we suggest the use of our interval inversion method, which inverts simultaneously all data from a greater depth interval to estimate petrophysical parameters of reservoirs to the same interval. A series expansion based discretization scheme ensures much more data against unknowns that significantly reduces the estimation error of model parameters. The knowledge of reservoir boundaries is also required for reserve calculation. Well logs contain information about layer-thicknesses, but they cannot be extracted by the local inversion approach. We showed earlier that the depth coordinates of layerboundaries can be determined within the interval inversion procedure. The weakness of method is that the output of inversion is highly influenced by arbitrary assumptions made for layer-thicknesses when creating a starting model (i.e. number of layers, search domain of thicknesses). In this study, we apply an automated procedure for the determination of rock interfaces. We perform multidimensional hierarchical cluster analysis on well-logging data before inversion that separates the measuring points of different layers on a lithological basis. As a result, the vertical distribution of clusters furnishes the coordinates of layer-boundaries, which are then used as initial model parameters for the interval inversion procedure. The improved inversion method gives a fast, automatic and objective estimation to layer-boundaries and petrophysical parameters, which is demonstrated by a hydrocarbon field example.展开更多
Evolutionary computation based on the idea of biologic evolution is one type of global optimization algorithm that uses self-adaptation,self-organization and random searching to solve optimization problems.The evoluti...Evolutionary computation based on the idea of biologic evolution is one type of global optimization algorithm that uses self-adaptation,self-organization and random searching to solve optimization problems.The evolutionary-simplex algorithm is introduced in this paper.It contains floating encoding which combines the evolutionary computation and the simplex algorithm to overcome the problems encountered in the genetic algorithm and evolutionary strategy methods. Numerical experiments are performed using seven typical functions to verify the algorithm.An inverse analysis method to identify structural physical parameters based on incomplete dynamic responses obtained from the analysis in the time domain is presented by using the evolutionary-simplex algorithm.The modal evolutionary-simplex algorithm converted from the time domain to the modal domain is proposed to improve the inverse efficiency.Numerical calculations for a 50-DOF system show that when compared with other methods,the evolutionary-simplex algorithm offers advantages of high precision, efficient searching ability,strong ability to resist noise,independence of initial value,and good adaptation to incomplete information conditions.展开更多
Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation n...Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.展开更多
An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, ...An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channelflow as the problem-handling in civil, mechanical, electronic, and chemical engineering. Therelationship between the dispersion motion and the carrier phase flow is governed and expressed bythe trans-lational motion equation of spherical dispersion. The equation consists of all the forcecomponents including inertia, added inertia, drag, lift, pressure gradient force and gravity force.Using this equation enables us to estimate the carrier phase flow structure using only the data ofthe dispersion motioa Whole field liquid flow structure is also estimated using spatial or temporalinterpolation method. In order to verify this principle, the Taylor-Green vortex flow, and theKarman vortex shedding from a square cylinder have been chosea The results show that the combinationof the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporalpostprocessing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phaseflow.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.U22A20594)the Fundamental Research Funds for the Central Universities(Grant No.B230205028)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0694).
文摘The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.
基金provided through research grant No.0035/2019/A1 from the Science and Technology Development Fund,Macao SARthe assistantship from the Faculty of Science and Technology,University of Macao。
文摘Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion.
基金supported by the National Natural Science Foundation of China(Grants No.51879185 and 52179139)the Open Fund of the Hubei Key Laboratory of Construction and Management in Hydropower Engineering(Grant No.2020KSD06).
文摘Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties efficiently and reliably,this study developed an uncertainty inversion analysis method for rockfill material parameters using the stacking ensemble strategy and Jaya optimizer.The comprehensive implementation process of the proposed model was described with an illustrative CFRD example.First,the surrogate model method using the stacking ensemble algorithm was used to conduct the Monte Carlo stochastic finite element calculations with reduced computational cost and improved accuracy.Afterwards,the Jaya algorithm was used to inversely calculate the combination of the coefficient of variation of rockfill material parameters.This optimizer obtained higher accuracy and more significant uncertainty reduction than traditional optimizers.Overall,the developed model effectively identified the random parameters of rockfill materials.This study provided scientific references for uncertainty analysis of CFRDs.In addition,the proposed method can be applied to other similar engineering structures.
文摘A genetic algorithm-based joint inversion method is presented for evaluating hydrocarbon-bearing geological formations. Conventional inversion procedures routinely used in the oil industry perform the inversion processing of borehole geophysical data locally. As having barely more types of data than unknowns in a depth, a set of marginally over-determined inverse problems has to be solved along a borehole, which is a rather noise sensitive procedure. For the reduction of noise effect, the amount of overdetermination must be increased. To fulfill this requirement, we suggest the use of our interval inversion method, which inverts simultaneously all data from a greater depth interval to estimate petrophysical parameters of reservoirs to the same interval. A series expansion based discretization scheme ensures much more data against unknowns that significantly reduces the estimation error of model parameters. The knowledge of reservoir boundaries is also required for reserve calculation. Well logs contain information about layer-thicknesses, but they cannot be extracted by the local inversion approach. We showed earlier that the depth coordinates of layerboundaries can be determined within the interval inversion procedure. The weakness of method is that the output of inversion is highly influenced by arbitrary assumptions made for layer-thicknesses when creating a starting model (i.e. number of layers, search domain of thicknesses). In this study, we apply an automated procedure for the determination of rock interfaces. We perform multidimensional hierarchical cluster analysis on well-logging data before inversion that separates the measuring points of different layers on a lithological basis. As a result, the vertical distribution of clusters furnishes the coordinates of layer-boundaries, which are then used as initial model parameters for the interval inversion procedure. The improved inversion method gives a fast, automatic and objective estimation to layer-boundaries and petrophysical parameters, which is demonstrated by a hydrocarbon field example.
基金National Natural Science Foundation of China(Grant No.50278006)
文摘Evolutionary computation based on the idea of biologic evolution is one type of global optimization algorithm that uses self-adaptation,self-organization and random searching to solve optimization problems.The evolutionary-simplex algorithm is introduced in this paper.It contains floating encoding which combines the evolutionary computation and the simplex algorithm to overcome the problems encountered in the genetic algorithm and evolutionary strategy methods. Numerical experiments are performed using seven typical functions to verify the algorithm.An inverse analysis method to identify structural physical parameters based on incomplete dynamic responses obtained from the analysis in the time domain is presented by using the evolutionary-simplex algorithm.The modal evolutionary-simplex algorithm converted from the time domain to the modal domain is proposed to improve the inverse efficiency.Numerical calculations for a 50-DOF system show that when compared with other methods,the evolutionary-simplex algorithm offers advantages of high precision, efficient searching ability,strong ability to resist noise,independence of initial value,and good adaptation to incomplete information conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51579086,51479054,51379068&51139001)Jiangsu Natural Science Foundation(Grant No.BK20140039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.YS11001)
文摘Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.
文摘An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channelflow as the problem-handling in civil, mechanical, electronic, and chemical engineering. Therelationship between the dispersion motion and the carrier phase flow is governed and expressed bythe trans-lational motion equation of spherical dispersion. The equation consists of all the forcecomponents including inertia, added inertia, drag, lift, pressure gradient force and gravity force.Using this equation enables us to estimate the carrier phase flow structure using only the data ofthe dispersion motioa Whole field liquid flow structure is also estimated using spatial or temporalinterpolation method. In order to verify this principle, the Taylor-Green vortex flow, and theKarman vortex shedding from a square cylinder have been chosea The results show that the combinationof the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporalpostprocessing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phaseflow.
基金The National Natural Science Foundation of China(No.71973023,42277493)the Social Science Foundation of Jiangsu Province(No.19GLA003)the Soft Science Research Program of Jiangsu Province(No.BR2019043)。