This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were appl...This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.展开更多
Fault activation has been the focus of research community for years.However,the studies of fault activation remain immature,such as the fault activation mode and its major factors under constant normal stiffness(CNS)c...Fault activation has been the focus of research community for years.However,the studies of fault activation remain immature,such as the fault activation mode and its major factors under constant normal stiffness(CNS)conditions associated with large thickness of fault surrounding rock mass.In this study,the rock friction experiments were conducted to understand the fault activation modes under the CNS conditions.Two major parameters,i.e.the initial normal stress and loading rate,were considered and calibrated in the tests.To reveal the response mechanism of fault activation,the local strains near the fault plane were recorded,and the macroscopic stresses and displacements were analyzed.The testing results show that the effect of displacement-controlled loading rate is more pronounced under the CNS conditions than that under constant normal load(CNL)conditions.Both the normal and shear stresses drop suddenly when the stick-slip occurs.The decrease and increase of the normal stress are synchronous with the shear stress in the regular stick-slip scenario,but mismatch with the shear stress during the chaotic stick-slip process.The results are helpful for understanding the fault sliding mode and the prediction and prevention of fault slip.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51379118 and 51639002)SDUST Scientific Found(Grant No.2015KYTD104)
文摘This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.
基金supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the National Natural Science Foundation of China(Grant Nos.52109142 and 41941018).
文摘Fault activation has been the focus of research community for years.However,the studies of fault activation remain immature,such as the fault activation mode and its major factors under constant normal stiffness(CNS)conditions associated with large thickness of fault surrounding rock mass.In this study,the rock friction experiments were conducted to understand the fault activation modes under the CNS conditions.Two major parameters,i.e.the initial normal stress and loading rate,were considered and calibrated in the tests.To reveal the response mechanism of fault activation,the local strains near the fault plane were recorded,and the macroscopic stresses and displacements were analyzed.The testing results show that the effect of displacement-controlled loading rate is more pronounced under the CNS conditions than that under constant normal load(CNL)conditions.Both the normal and shear stresses drop suddenly when the stick-slip occurs.The decrease and increase of the normal stress are synchronous with the shear stress in the regular stick-slip scenario,but mismatch with the shear stress during the chaotic stick-slip process.The results are helpful for understanding the fault sliding mode and the prediction and prevention of fault slip.