Delay/disruption tolerant networking (DTN) is an approach to networking where intermittent connectivity exists: it is often afforded by a store and forward technique. Depending on the capability of intermediary nod...Delay/disruption tolerant networking (DTN) is an approach to networking where intermittent connectivity exists: it is often afforded by a store and forward technique. Depending on the capability of intermediary nodes to carry and forward messages, messages can be eventually delivered to their destination by mobile nodes with an appropriate routing protocol. To have achieved a successful delivery, most DTN routing protocols use message duplication methods. Although messages are rapidly transferred to the destination, the redundancy in the number of message copies increases rapidly. This paper presents a new routing scheme based on a stochastic process for epidemic routing. Message redundancy is efficiently reduced and the number of message copies is controlled reasonably. During the contact process of nodes in the network, the number of message copies changes, and according to the variability in the number of copies, we construct a special Markov chain, birth and death process, on the number of message copies then calculate and obtain a stationary distribution of the birth and death process. Comparing the theoretical model with the simulation we have performed we see similar results. Our method improves on time-to-live (TTL) and antipacket methods, in both redundancy and delivery success efficiency.展开更多
The inherent selfishness of each node for the enhancement of message successful delivery ratio and the network overall performance improvement are reflected in the contradiction relationship of competition and coopera...The inherent selfishness of each node for the enhancement of message successful delivery ratio and the network overall performance improvement are reflected in the contradiction relationship of competition and cooperation in delay/disruption tolerant networks (DTN). In particular, the existence of malicious node aggravates this contradiction. To resolve this contradiction, social relationship theory and group theory of social psychology were adopted to do an in-depth analysis. The concrete balancing approach which leveraged Nash equilibrium theory of game theory was proposed to resolve this contradiction in reality. Thus, a new congestion control routing algorithm for security defense based on social psychology and game theory (CRSG) was put forward. Through the experiment, this algorithm proves that it can enhance the message successful delivery ratio by more than 15% and reduce the congestion ratio over 15% as well. This algorithm balances the contradiction relationship between the two key performance targets and made all nodes exhibit strong cooperation relationship in DTN.展开更多
文摘Delay/disruption tolerant networking (DTN) is an approach to networking where intermittent connectivity exists: it is often afforded by a store and forward technique. Depending on the capability of intermediary nodes to carry and forward messages, messages can be eventually delivered to their destination by mobile nodes with an appropriate routing protocol. To have achieved a successful delivery, most DTN routing protocols use message duplication methods. Although messages are rapidly transferred to the destination, the redundancy in the number of message copies increases rapidly. This paper presents a new routing scheme based on a stochastic process for epidemic routing. Message redundancy is efficiently reduced and the number of message copies is controlled reasonably. During the contact process of nodes in the network, the number of message copies changes, and according to the variability in the number of copies, we construct a special Markov chain, birth and death process, on the number of message copies then calculate and obtain a stationary distribution of the birth and death process. Comparing the theoretical model with the simulation we have performed we see similar results. Our method improves on time-to-live (TTL) and antipacket methods, in both redundancy and delivery success efficiency.
基金Projects(61202488, 61070199, 61103182) supported by the National Natural Science Foundation of China
文摘The inherent selfishness of each node for the enhancement of message successful delivery ratio and the network overall performance improvement are reflected in the contradiction relationship of competition and cooperation in delay/disruption tolerant networks (DTN). In particular, the existence of malicious node aggravates this contradiction. To resolve this contradiction, social relationship theory and group theory of social psychology were adopted to do an in-depth analysis. The concrete balancing approach which leveraged Nash equilibrium theory of game theory was proposed to resolve this contradiction in reality. Thus, a new congestion control routing algorithm for security defense based on social psychology and game theory (CRSG) was put forward. Through the experiment, this algorithm proves that it can enhance the message successful delivery ratio by more than 15% and reduce the congestion ratio over 15% as well. This algorithm balances the contradiction relationship between the two key performance targets and made all nodes exhibit strong cooperation relationship in DTN.