The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport c...The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916. The real-time feed-back control system for the plasma displacement was employed. Modeling results of the evolution of the poloidal field coil currents, the plasma current, the major radius, the plasma configuration all show agreement with experimental measurements. Results from the simulation show that during disruption, heat flux about 8 MW m-2 flows to the upper divertor target plate and about 6 MW m-2 flows to the lower divertor target plate. Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient. This shows that TSC has high flexibility and predictability.展开更多
Studies based on AC high voltage tests have been done at Cepel to investigate the performance of 800 kV busbar insulators under heavy wetting conditions.Insulators were tested which are now used on site and also with ...Studies based on AC high voltage tests have been done at Cepel to investigate the performance of 800 kV busbar insulators under heavy wetting conditions.Insulators were tested which are now used on site and also with different configurations of booster sheds.Images recorded by ultra-violet(UV) camera were used to help the investigations on the effectiveness of booster sheds.By comparing UV images of the insulator being stressed with high voltage under heavy artificial rain,with and without booster sheds,it was possible to observe how significant the reduction on the flashover formation process was when booster sheds were used.The effectiveness of booster sheds was also quantified by determining the disruptive discharge of the insulator with and without them.The results of these studies can also be considered as contribution to national and international standard technical committees to improving the standardized procedure for tests on ultra high voltage(UHV) insulators under heavy rain.Subjects such as the clear definition of relevant UHV test procedure and test arrangements,including the use of UV camera,have to be taken into account.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11505290,51576208 and11575239)the National Magnetic Confinement Fusion Science Program of China(No.2015GB102004)
文摘The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916. The real-time feed-back control system for the plasma displacement was employed. Modeling results of the evolution of the poloidal field coil currents, the plasma current, the major radius, the plasma configuration all show agreement with experimental measurements. Results from the simulation show that during disruption, heat flux about 8 MW m-2 flows to the upper divertor target plate and about 6 MW m-2 flows to the lower divertor target plate. Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient. This shows that TSC has high flexibility and predictability.
文摘Studies based on AC high voltage tests have been done at Cepel to investigate the performance of 800 kV busbar insulators under heavy wetting conditions.Insulators were tested which are now used on site and also with different configurations of booster sheds.Images recorded by ultra-violet(UV) camera were used to help the investigations on the effectiveness of booster sheds.By comparing UV images of the insulator being stressed with high voltage under heavy artificial rain,with and without booster sheds,it was possible to observe how significant the reduction on the flashover formation process was when booster sheds were used.The effectiveness of booster sheds was also quantified by determining the disruptive discharge of the insulator with and without them.The results of these studies can also be considered as contribution to national and international standard technical committees to improving the standardized procedure for tests on ultra high voltage(UHV) insulators under heavy rain.Subjects such as the clear definition of relevant UHV test procedure and test arrangements,including the use of UV camera,have to be taken into account.